Quick Start Tutorial ==================== Getting started with QhX is simple. Follow the steps below to begin analyzing quasar light curves. Step 1: Installation -------------------- First, install the QhX package if you have not already. .. code-block:: bash git clone https://github.com/lionandjelka/QhX1.git cd QhX1 pip install . Step 2: Running Tests --------------------- Once you have installed the `QhX` package, it is important to run the tests to verify that everything is working correctly in your environment. This section explains how to do that. ### 1. Ensure `pytest` is Installed To run the tests, you need `pytest`. You can install it using `pip`: .. code-block:: bash pip install pytest ### 2. Check Where the Package is Installed To confirm where the `QhX` package is installed, use the following command: .. code-block:: bash pip show QhX This command will display the installation path of the `QhX` package. You can use this path to locate the tests, if necessary. ### 3. Running the Tests #### Option 1: Running Tests from the Installed Package Directory If you are in the directory where the package is installed, you can directly run the tests using: .. code-block:: bash pytest -s QhX/tests/test_integrated.py #### Option 2: Running Tests from Anywhere If you are not in the package installation directory, you can specify the full path to the tests. Use the path obtained in step 2, and run: .. code-block:: bash python -m pytest -s /path/to/your/package/QhX/tests/test_integrated.py This will run the tests regardless of your current directory, as long as the package is installed. ### 4. Using Verbose Mode For more detailed test output, you can add the `-v` flag for verbose mode: .. code-block:: bash pytest -v -s QhX/tests/test_integrated.py This will provide more information about each test that is executed. ### Notes - Make sure that you are using the correct Python environment where the `QhX` package is installed. - You can also run `pytest` as a Python module to ensure it's using the correct environment: .. code-block:: bash python -m pytest -v -s QhX/tests/test_integrated.py You should see output similar to the following, where each entry displays the calculation of the wavelet Z-transform for each (of 100) artificially simulated light curve, assessing period significance and confirming that the tests have passed .. code-block:: text ====================================================== test session starts ====================================================== platform darwin -- Python 3.10.9, pytest-7.1.2, pluggy-1.0.0 rootdir: /Users/andjelka/Documents/QhX1 plugins: anyio-3.5.0 collected 2 items QhX/tests/test_integrated.py Running integrated test on simulation of single light curve, and functionalities of modules for Wavelet matrix coefficients calculations and period and its significance calculation. This may take time about 500-800 seconds... *** Starting Weighted Wavelet Z-transform *** Pseudo sample frequency (median) is 0.203 largest tau window is 46.124 8.05 seconds has passed to complete Weighted Wavelet Z-transform *** Starting Weighted Wavelet Z-transform *** Pseudo sample frequency (median) is 0.203 largest tau window is 46.124 8.49 seconds has passed to complete Weighted Wavelet Z-transform . . . results of individual testings of modules for period detection and significance simulated period in days 100 list of periods in days [100.47726701833716] upper and lower errors in days [3.3403584182233317] [1.6831563583308196] number of simulated shuffled light curves 10 experimental significance 1.0 ================================================= 1 passed in 114.15s (0:01:54) ================================================= For more advanced users, you may test the logger and parallel solver classes: .. code-block:: bash os@ubuntu:~/Desktop/qhx_astro/QhX1$ cd QhX/tests; pytest -s test_logger.py You should see output resembling this: .. code-block:: text ================================== test session starts ================================== platform linux -- Python 3.10.11, pytest-8.1.1, pluggy-1.4.0 rootdir: /home/os/Desktop/qhx_astro/QhX1 plugins: anyio-4.3.0 collected 1 item test_logger.py Log file created. Time log found in file. Output log found in file. . ================================== 1 passed in 27.56s =================================== For the parallel solver (note we are in the QhX1 folder again): .. code-block:: bash os@ubuntu:~/Desktop/qhx_astro/QhX1$ cd QhX/tests; pytest -s test_parallel_solver.py The output should look similar to this: .. code-block:: text ================================== test session starts ================================== platform linux -- Python 3.10.11, pytest-8.1.1, pluggy-1.4.0 rootdir: /home/os/Desktop/qhx_astro/QhX1 plugins: anyio-4.3.0 collected 1 item test_parallel_solver.py Log file for 0 created. Log file for 1 created. Log file for 2 created. Log file for 3 created. Merged results file present. Merged result file content correct. . ================================== 1 passed in 23.84s =================================== Step 3: Importing the Package ----------------------------- Once QhX is installed, and you have confirmed that the tests pass, you can import it into your Python script or interactive session: .. code-block:: python import QhX import numpy as np import pandas as pd Step 4: Loading Data -------------------- Load your light curve data into QhX. For example importing parquet from ` LSST AGN Data Challenge `_ : .. code-block:: python from QhX.data_manager import DataManager data_manager = DataManager() fs_df = data_manager.load_fs_df('https://zenodo.org/record/6878414/files/ForcedSourceTable.parquet') fs_gp = data_manager.group_fs_df() You should see the message like this, indicating that parquet is loaded .. code-block:: text Forced source data loaded successfully. Forced source data grouped successfully. .. code-block:: python td_objects=data_manager.load_object_df("https://zenodo.org/record/6878414/files/ObjectTable.parquet") #Find quasars IDs setindexqso=td_objects[(td_objects["class"].eq("Qso"))].index .. code-block:: text Object data loaded and processed successfully. .. code-block:: text ##FIND quasars indices and transform to arrays setindexnew=data_manager.get_qso(setindexqso) setindexnew=np.array(setindexnew) df = pd.DataFrame({'objectId': setindexnew}) df.set_index('objectId', inplace=True) setidnew=df.index Importing light curve of one object ID=1384142 .. code-block:: python from QhX.light_curve import get_lctiktok, get_lc22 light_curves_data = get_lc22(data_manager, '1384142', include_errors=False) Step 5: Analyzing the Light Curve --------------------------------- With the data loaded, you can start analyzing the light curve: .. code-block:: python from QhX.calculation import * from QhX.detection import * # Ensure to import or define other necessary functions like hybrid2d, periods, same_periods, etc. from QhX.algorithms.wavelets.wwtz import * process1_results = process1_new(data_manager, '1384142', ntau=80, ngrid=800, provided_minfq=2000, provided_maxfq=10, include_errors=True) During the execution of the above function, you will see verbose output assessing the significance of periods based on the Johnson et al. approach. For more details, refer to the `Theoretical Background` section and the subsection on `Detection and Calculation`. The output dictionary `process1_results` contains: .. code-block:: text {'objectid': '1384142', 'sampling_i': 45.08568965517243, 'sampling_j': 45.08568965517243, 'period': 446.179587283882, 'upper_error': 26.594480680527795, 'lower_error': 22.513862402711993, 'significance': 0.98, 'label': '0-1'}, {'objectid': '1384142', 'sampling_i': 45.08568965517243, 'sampling_j': 45.08568965517243, 'period': 446.179587283882, 'upper_error': 35.654914195946844, 'lower_error': 17.127186682281263, 'significance': 1.0, 'label': '0-2'}, {'objectid': '1384142', 'sampling_i': 45.08568965517243, 'sampling_j': 45.87666666666669, 'period': 446.179587283882, 'upper_error': 30.9002280462837, 'lower_error': 20.398836831717233, 'significance': 1.0, 'label': '0-3'}, {'objectid': '1384142', 'sampling_i': 45.08568965517243, 'sampling_j': 45.08568965517243, 'period': 472.39444936522017, 'upper_error': 26.594480680527795, 'lower_error': 22.513862402711993, 'significance': 1.0, 'label': '1-2'}, {'objectid': '1384142', 'sampling_i': 45.08568965517243, 'sampling_j': 45.87666666666669, 'period': 472.39444936522017, 'upper_error': 26.594480680527795, 'lower_error': 22.513862402711993, 'significance': 1.0, 'label': '1-3'}, {'objectid': '1384142', 'sampling_i': 45.08568965517243, 'sampling_j': 45.87666666666669, 'period': 308.999613750483, 'upper_error': 22.17397677238779, 'lower_error': 3.746728576973794, 'significance': 0.98, 'label': '1-3'}, {'objectid': '1384142', 'sampling_i': 45.08568965517243, 'sampling_j': 45.87666666666669, 'period': 472.39444936522017, 'upper_error': 30.9002280462837, 'lower_error': 20.398836831717233, 'significance': 0.94, 'label': '2-3'} Step 6: Viewing Results ----------------------- Finally, examine the results of your analysis. Important that process1_results will be suplied as a list of dictionaries: .. code-block:: python from QhX.output import classify_periods, classify_period outt=classify_periods([process1_results]) outt['classification'] =outt.apply(classify_period, axis=1) print(outt) This will print the detected periods, their errors, significance levels, iou metric, difference among detected periods, flags. .. table:: Example Analysis Results :widths: auto :name: example-results +-------+----------+------------------+------------------+------------------+------+-----+-----+-------------+------+---------------+ | index | objectid | m3 | m4 | m5 | m6 | m7_1| m7_2| period_diff | iou | classification| +=======+==========+==================+==================+==================+======+=====+=====+=============+======+===============+ | 0 | 1384142 | 446.179587283882 | 22.5138624027119 | 26.5944806805277 | 0.98 | 0-1 | 0-2 | 0.0 | 1.0 | poor | +-------+----------+------------------+------------------+------------------+------+-----+-----+-------------+------+---------------+ | 1 | 1384142 | 446.179587283882 | 22.5138624027119 | 26.5944806805277 | 0.98 | 0-1 | 0-3 | 0.0 | 1.0 | poor | +-------+----------+------------------+------------------+------------------+------+-----+-----+-------------+------+---------------+ | 2 | 1384142 | 446.179587283882 | 22.5138624027119 | 26.5944806805277 | 0.98 | 0-1 | 1-2 | 0.05875 | 0.215| poor | +-------+----------+------------------+------------------+------------------+------+-----+-----+-------------+------+---------------+ | 3 | 1384142 | 446.179587283882 | 22.5138624027119 | 26.5944806805277 | 0.98 | 0-1 | 1-3 | 0.05875 | 0.215| poor | +-------+----------+------------------+------------------+------------------+------+-----+-----+-------------+------+---------------+ | 4 | 1384142 | 446.179587283882 | 22.5138624027119 | 26.5944806805277 | 0.98 | 0-1 | 1-3 | 0.30745 | NaN | NAN | +-------+----------+------------------+------------------+------------------+------+-----+-----+-------------+------+---------------+ This table shows an example of the output from the QhX package after analyzing light curve data. The `objectid` column represents the identifier for the object, while `m3` is period. m4, and m5 are upper and lower errors, m6 is significance, to m7_1 and `m7_2` columns are the pairs of bands. The `period_diff` column indicates the difference between detected periods, `iou` is the intersection over union of the period errors, and the `classification` column categorizes the reliability of the detected period. Further Exploration ------------------- Now that you have had a taste of what QhX can do, explore the documentation to learn more about the available modules and functions. You can also check out the Examples section for more detailed use cases and advanced features.