Educative example of parallel processing using threading on local computer, QSO from LSST AGN Data Challenge database
[1]:
import QhX
[2]:
from QhX import processing_utils
[3]:
from QhX.processing_utils import parallel_pool,process_pool
This module provides functionality for parallel processing of data tasks using threading, on your local computer, if it is more handy than using our procedure for parallelization on High Performance Computer. This procedure could be used as an initial training for students.
Key Points:
Non-picklable Objects: Objects like DataManager that cannot be pickled (a requirement for multiprocessing) are handled efficiently using a threading approach (like with ThreadPool) because threads share the same memory space. This is particularly useful for objects that maintain state or have open connections (like database connections) that are not easily serialized.
I/O-Bound Tasks: For tasks that are I/O-bound (e.g., network data fetching, file reading, database querying), threading can significantly improve performance. While Python’s GIL (Global Interpreter Lock) prevents CPU-bound tasks from running in parallel in a multi-threaded environment, it allows I/O-bound tasks to execute concurrently.
Shared Resources: Threading is beneficial when using shared resources (like a shared DataManager instance) across different tasks without the need to initiate them separately for each task. Since all threads access the same memory space, a resource can be initialized once and used across all threads, enhancing memory efficiency.
CPU-Bound Tasks with GIL Limitations: Although threading in Python is not ideal for CPU-bound tasks due to the GIL, it can be advantageous for tasks that involve calling out to external applications or libraries that release the GIL (e.g., operations in NumPy, pandas, or I/O operations).
Rapid Task Switching Needs: Applications that benefit from rapid switching between tasks (e.g., handling multiple quick I/O operations concurrently) can leverage threading to facilitate this without the overhead of process creation and inter-process communication. “””
[ ]:
#import json
#import pandas as pd
#import numpy as np
#from sqlalchemy.engine import URL
from sqlalchemy.engine import create_engine
import matplotlib.pyplot as plt
import scipy
from scipy.optimize import curve_fit
from scipy.optimize import OptimizeWarning
from dateutil.relativedelta import relativedelta
import warnings
from itertools import groupby
import pyarrow as pa
import pyarrow.parquet as pq
[4]:
## commonly used modules
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
import os, sys
import yaml
pd.set_option('display.max_columns', 999)
[5]:
from QhX.data_manager import DataManager
from QhX.detection import process1tiktok, process1, process1_new
class DataManager: “”” A class for managing and processing astronomical data sets.
This class provides methods to load and process forced source data and object data,
specifically focusing on time-domain objects and quasars.
Attributes
----------
fs_df : pd.DataFrame or None
DataFrame containing forced source data.
fs_gp : pd.core.groupby.DataFrameGroupBy or None
GroupBy object with forced source data grouped by object ID.
object_df : pd.DataFrame or None
DataFrame containing object data.
td_objects : pd.DataFrame or None
DataFrame containing time-domain objects.
"""
[6]:
#This will take a time..
data_manager = DataManager()
fs_df = data_manager.load_fs_df('https://zenodo.org/record/6878414/files/ForcedSourceTable.parquet')
fs_gp = data_manager.group_fs_df()
INFO:root:Forced source data loaded successfully.
INFO:root:Forced source data grouped successfully.
[7]:
td_objects=data_manager.load_object_df("https://zenodo.org/record/6878414/files/ObjectTable.parquet")
#Find quasars
setindexqso=td_objects[(td_objects["class"].eq("Qso"))].index
INFO:root:Object data loaded and processed successfully.
[8]:
td_objects
[8]:
ra | dec | psPm_ra | psPm_dec | psParallax | psFlux_u | psFlux_g | psFlux_r | psFlux_i | psFlux_z | psFlux_y | psFluxErr_u | psFluxErr_g | psFluxErr_r | psFluxErr_i | psFluxErr_z | psFluxErr_y | bdFlux_u | bdFlux_g | bdFlux_r | bdFlux_i | bdFlux_z | bdFlux_y | bdFluxErr_u | bdFluxErr_g | bdFluxErr_r | bdFluxErr_i | bdFluxErr_z | bdFluxErr_y | psMag_u | psMag_g | psMag_r | psMag_i | psMag_z | psMag_y | psMagErr_u | psMagErr_g | psMagErr_r | psMagErr_i | psMagErr_z | psMagErr_y | bdMag_u | bdMag_g | bdMag_r | bdMag_i | bdMag_z | bdMag_y | bdMagErr_u | bdMagErr_g | bdMagErr_r | bdMagErr_i | bdMagErr_z | bdMagErr_y | extendedness_u | extendedness_g | extendedness_r | extendedness_i | extendedness_z | extendedness_y | stdColor_0 | stdColor_1 | stdColor_2 | stdColor_3 | stdColor_4 | stdColorErr_0 | stdColorErr_1 | stdColorErr_2 | stdColorErr_3 | stdColorErr_4 | class | photoZ_pest | z | flags_u | flags_g | flags_r | flags_i | flags_z | flags_y | spec_fiberid | spec_plate | spec_mjd | lcPeriodic[0]_g | lcPeriodic[0]_r | lcPeriodic[0]_i | lcPeriodic[1]_g | lcPeriodic[1]_r | lcPeriodic[1]_i | lcPeriodic[2]_g | lcPeriodic[2]_r | lcPeriodic[2]_i | lcPeriodic[3]_g | lcPeriodic[3]_r | lcPeriodic[3]_i | lcPeriodic[4]_u | lcPeriodic[4]_g | lcPeriodic[4]_r | lcPeriodic[4]_i | lcPeriodic[4]_z | lcPeriodic[5]_u | lcPeriodic[5]_g | lcPeriodic[5]_r | lcPeriodic[5]_i | lcPeriodic[5]_z | lcPeriodic[6]_u | lcPeriodic[6]_g | lcPeriodic[6]_r | lcPeriodic[6]_i | lcPeriodic[6]_z | lcPeriodic[7]_u | lcPeriodic[7]_g | lcPeriodic[7]_r | lcPeriodic[7]_i | lcPeriodic[7]_z | lcPeriodic[8]_u | lcPeriodic[8]_g | lcPeriodic[8]_r | lcPeriodic[8]_i | lcPeriodic[8]_z | lcPeriodic[9]_u | lcPeriodic[9]_g | lcPeriodic[9]_r | lcPeriodic[9]_i | lcPeriodic[9]_z | lcPeriodic[10]_u | lcPeriodic[10]_g | lcPeriodic[10]_r | lcPeriodic[10]_i | lcPeriodic[10]_z | lcPeriodic[11]_u | lcPeriodic[11]_g | lcPeriodic[11]_r | lcPeriodic[11]_i | lcPeriodic[11]_z | lcPeriodic[12]_u | lcPeriodic[12]_g | lcPeriodic[12]_r | lcPeriodic[12]_i | lcPeriodic[12]_z | lcPeriodic[13]_u | lcPeriodic[13]_g | lcPeriodic[13]_r | lcPeriodic[13]_i | lcPeriodic[13]_z | lcPeriodic[14]_u | lcPeriodic[14]_g | lcPeriodic[14]_r | lcPeriodic[14]_i | lcPeriodic[14]_z | lcPeriodic[15]_u | lcPeriodic[15]_g | lcPeriodic[15]_r | lcPeriodic[15]_i | lcPeriodic[15]_z | lcPeriodic[16]_u | lcPeriodic[16]_g | lcPeriodic[16]_r | lcPeriodic[16]_i | lcPeriodic[16]_z | lcPeriodic[17]_u | lcPeriodic[17]_g | lcPeriodic[17]_r | lcPeriodic[17]_i | lcPeriodic[17]_z | lcPeriodic[18]_u | lcPeriodic[18]_g | lcPeriodic[18]_r | lcPeriodic[18]_i | lcPeriodic[18]_z | lcPeriodic[19]_u | lcPeriodic[19]_g | lcPeriodic[19]_r | lcPeriodic[19]_i | lcPeriodic[19]_z | lcPeriodic[20]_u | lcPeriodic[20]_g | lcPeriodic[20]_r | lcPeriodic[20]_i | lcPeriodic[20]_z | lcPeriodic[21]_u | lcPeriodic[21]_g | lcPeriodic[21]_r | lcPeriodic[21]_i | lcPeriodic[21]_z | lcPeriodic[22]_u | lcPeriodic[22]_g | lcPeriodic[22]_r | lcPeriodic[22]_i | lcPeriodic[22]_z | lcPeriodic[23]_u | lcPeriodic[23]_g | lcPeriodic[23]_r | lcPeriodic[23]_i | lcPeriodic[23]_z | lcPeriodic[24]_u | lcPeriodic[24]_g | lcPeriodic[24]_r | lcPeriodic[24]_i | lcPeriodic[24]_z | lcPeriodic[25]_u | lcPeriodic[25]_g | lcPeriodic[25]_r | lcPeriodic[25]_i | lcPeriodic[25]_z | lcPeriodic[26]_u | lcPeriodic[26]_g | lcPeriodic[26]_r | lcPeriodic[26]_i | lcPeriodic[26]_z | lcPeriodic[27]_u | lcPeriodic[27]_g | lcPeriodic[27]_r | lcPeriodic[27]_i | lcPeriodic[27]_z | lcPeriodic[28]_u | lcPeriodic[28]_g | lcPeriodic[28]_r | lcPeriodic[28]_i | lcPeriodic[28]_z | lcPeriodic[29]_u | lcPeriodic[29]_g | lcPeriodic[29]_r | lcPeriodic[29]_i | lcPeriodic[29]_z | lcPeriodic[30]_u | lcPeriodic[30]_g | lcPeriodic[30]_r | lcPeriodic[30]_i | lcPeriodic[30]_z | lcPeriodic[31]_u | lcPeriodic[31]_g | lcPeriodic[31]_r | lcPeriodic[31]_i | lcPeriodic[31]_z | lcPeriodic[32]_u | lcPeriodic[32]_g | lcPeriodic[32]_r | lcPeriodic[32]_i | lcPeriodic[32]_z | lcNonPeriodic[0]_u | lcNonPeriodic[0]_g | lcNonPeriodic[0]_r | lcNonPeriodic[0]_i | lcNonPeriodic[0]_z | lcNonPeriodic[1]_u | lcNonPeriodic[1]_g | lcNonPeriodic[1]_r | lcNonPeriodic[1]_i | lcNonPeriodic[1]_z | lcNonPeriodic[2]_u | lcNonPeriodic[2]_g | lcNonPeriodic[2]_r | lcNonPeriodic[2]_i | lcNonPeriodic[2]_z | lcNonPeriodic[3]_u | lcNonPeriodic[3]_g | lcNonPeriodic[3]_r | lcNonPeriodic[3]_i | lcNonPeriodic[3]_z | lcNonPeriodic[4]_u | lcNonPeriodic[4]_g | lcNonPeriodic[4]_r | lcNonPeriodic[4]_i | lcNonPeriodic[4]_z | lcNonPeriodic[5]_u | lcNonPeriodic[5]_g | lcNonPeriodic[5]_r | lcNonPeriodic[5]_i | lcNonPeriodic[5]_z | lcNonPeriodic[6]_u | lcNonPeriodic[6]_g | lcNonPeriodic[6]_r | lcNonPeriodic[6]_i | lcNonPeriodic[6]_z | lcNonPeriodic[7]_u | lcNonPeriodic[7]_g | lcNonPeriodic[7]_r | lcNonPeriodic[7]_i | lcNonPeriodic[7]_z | lcNonPeriodic[8]_u | lcNonPeriodic[8]_g | lcNonPeriodic[8]_r | lcNonPeriodic[8]_i | lcNonPeriodic[8]_z | lcNonPeriodic[9]_u | lcNonPeriodic[9]_g | lcNonPeriodic[9]_r | lcNonPeriodic[9]_i | lcNonPeriodic[9]_z | lcNonPeriodic[10]_u | lcNonPeriodic[10]_g | lcNonPeriodic[10]_r | lcNonPeriodic[10]_i | lcNonPeriodic[10]_z | lcNonPeriodic[11]_u | lcNonPeriodic[11]_g | lcNonPeriodic[11]_r | lcNonPeriodic[11]_i | lcNonPeriodic[11]_z | lcNonPeriodic[12]_u | lcNonPeriodic[12]_g | lcNonPeriodic[12]_r | lcNonPeriodic[12]_i | lcNonPeriodic[12]_z | lcNonPeriodic[13]_u | lcNonPeriodic[13]_g | lcNonPeriodic[13]_r | lcNonPeriodic[13]_i | lcNonPeriodic[13]_z | lcNonPeriodic[14]_u | lcNonPeriodic[14]_g | lcNonPeriodic[14]_r | lcNonPeriodic[14]_i | lcNonPeriodic[14]_z | lcNonPeriodic[15]_u | lcNonPeriodic[15]_g | lcNonPeriodic[15]_r | lcNonPeriodic[15]_i | lcNonPeriodic[15]_z | lcNonPeriodic[16]_u | lcNonPeriodic[16]_g | lcNonPeriodic[16]_r | lcNonPeriodic[16]_i | lcNonPeriodic[16]_z | lcNonPeriodic[17]_u | lcNonPeriodic[17]_g | lcNonPeriodic[17]_r | lcNonPeriodic[17]_i | lcNonPeriodic[17]_z | lcNonPeriodic[18]_u | lcNonPeriodic[18]_g | lcNonPeriodic[18]_r | lcNonPeriodic[18]_i | lcNonPeriodic[18]_z | lcNonPeriodic[19]_u | lcNonPeriodic[19]_g | lcNonPeriodic[19]_r | lcNonPeriodic[19]_i | lcNonPeriodic[19]_z | lcNonPeriodic[20]_u | lcNonPeriodic[20]_g | lcNonPeriodic[20]_r | lcNonPeriodic[20]_i | lcNonPeriodic[20]_z | lcNonPeriodic[21]_u | lcNonPeriodic[21]_g | lcNonPeriodic[21]_r | lcNonPeriodic[21]_i | lcNonPeriodic[21]_z | lcNonPeriodic[22]_u | lcNonPeriodic[22]_g | lcNonPeriodic[22]_r | lcNonPeriodic[22]_i | lcNonPeriodic[22]_z | lcNonPeriodic[23]_u | lcNonPeriodic[23]_g | lcNonPeriodic[23]_r | lcNonPeriodic[23]_i | lcNonPeriodic[23]_z | lcNonPeriodic[24]_u | lcNonPeriodic[24]_g | lcNonPeriodic[24]_r | lcNonPeriodic[24]_i | lcNonPeriodic[24]_z | lcNonPeriodic[25]_u | lcNonPeriodic[25]_g | lcNonPeriodic[25]_r | lcNonPeriodic[25]_i | lcNonPeriodic[25]_z | lcNonPeriodic[26]_u | lcNonPeriodic[26]_g | lcNonPeriodic[26]_r | lcNonPeriodic[26]_i | lcNonPeriodic[26]_z | lcNonPeriodic[27]_u | lcNonPeriodic[27]_g | lcNonPeriodic[27]_r | lcNonPeriodic[27]_i | lcNonPeriodic[27]_z | lcNonPeriodic[28]_u | lcNonPeriodic[28]_g | lcNonPeriodic[28]_r | lcNonPeriodic[28]_i | lcNonPeriodic[28]_z | ebv | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
objectId | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
0271388 | 359.99169 | 0.969968 | NaN | NaN | NaN | 26160.979422 | 294519.269238 | 1.106956e+06 | 2.057265e+06 | 2.982015e+06 | NaN | 300.738260 | 256.142174 | 488.893498 | 770.129959 | 2161.119294 | NaN | 26436.085624 | 294967.193358 | 1.116087e+06 | 2.086941e+06 | 3.014907e+06 | NaN | 337.760680 | 919.045860 | 3311.546956 | 6004.226909 | 8854.073234 | NaN | 20.27555 | 17.727280 | 16.289740 | 15.616840 | 15.253790 | NaN | 0.012473 | 0.000944 | 0.000480 | 0.000406 | 0.000787 | NaN | 20.26420 | 17.725630 | 16.280820 | 15.601290 | 15.241880 | NaN | 0.013862 | 0.003383 | 0.003221 | 0.003124 | 0.003189 | NaN | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | NaN | 2.628649 | 1.437541 | 0.672900 | 0.403049 | NaN | 0.012517 | 0.001059 | 0.000629 | 0.000886 | NaN | Star | NaN | 0.000000 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | <NA> | 444 | 1489 | 52991 | 0.260275 | 0.061273 | 0.705092 | 21803.405141 | 276794.642597 | 1.777113e+04 | 16.228020 | 15.676071 | 948.808741 | 7408.387338 | 8196.866826 | 109911.497814 | 0.063015 | 0.029211 | 0.028178 | 0.021458 | 0.022473 | 0.006836 | 0.004464 | 0.002411 | 0.001684 | 0.001341 | 0.000797 | 0.000194 | 0.000458 | 0.000116 | 0.000499 | 0.000257 | 0.000151 | 0.000112 | 0.000153 | 0.000144 | 17.793201 | 20.851046 | 25.465177 | 25.805538 | 31.382942 | -1.200072 | 1.414476 | 2.535535 | 1.719811 | -1.038697 | -1.765356 | 3.044971 | -1.770712 | -2.701489 | -2.897284 | 2.583548 | 1.189083 | 0.597592 | -2.033987 | 3.085672 | 0.055051 | 0.024847 | 1.994609e-02 | 0.022730 | 0.019042 | 0.000698 | 0.001973 | 0.001522 | 0.002482 | 0.001308 | 0.000547 | 0.000563 | 0.000196 | 0.000696 | 0.000543 | 0.000272 | 0.000116 | 0.000101 | 0.000091 | 0.000115 | 7.033954 | 10.586698 | 22.454945 | 14.203220 | 19.134806 | 1.692748 | 1.862281 | 1.350974 | 2.605782 | -2.856124 | -2.747079 | 2.611592 | -2.579242 | -3.095433 | -0.208689 | 0.366546 | -1.783012 | -1.453997 | 0.094679 | 1.152248 | 0.050092 | 0.023383 | 1.976994e-02 | 0.016176 | 0.014899 | 0.006944 | 0.001797 | 0.001319 | 0.000316 | 0.001818 | 0.000572 | 0.000338 | 0.000309 | 0.000396 | 0.000479 | 0.000524 | 0.000060 | 0.000049 | 0.000077 | 0.000039 | 8.662116 | 19.452124 | 21.457851 | 28.781258 | 8.571919 | -0.630059 | 1.376486 | 1.326487 | 1.490568 | 2.937560 | -1.411466 | 0.931117 | 2.832502 | -2.357249 | -2.218536 | -1.395257 | 1.561549 | -2.367043 | -0.548603 | -1.384439 | 3.248688 | 2.795955 | 1.698663 | 2.758158 | 3.376963 | 1.065883 | 1.012299 | 0.980038 | 1.052691 | 0.972465 | 1.022609 | 1.170294 | 1.020969 | 1.009958 | 0.968035 | 0.000017 | 0.000005 | 0.000026 | 0.000005 | 0.000003 | 0.007866 | -0.004576 | -0.004189 | -0.000083 | 0.000362 | 0.295908 | 0.133103 | 0.446917 | 0.157799 | 0.076649 | 0.396552 | 0.092593 | 0.163636 | 0.129630 | 0.272727 | 0.193276 | 0.063699 | 0.076586 | 0.157090 | 0.131541 | 0.328259 | 0.096179 | 0.158223 | 0.232468 | 0.223962 | 0.438685 | 0.147633 | 0.261800 | 0.456678 | 0.384206 | 0.597733 | 0.238137 | 0.470788 | 0.558575 | 0.478881 | 0.860509 | 0.320848 | 0.707844 | 0.765057 | 0.719575 | -3.960000e-06 | -0.000024 | -0.000032 | -0.000004 | -0.000010 | 0.204516 | 0.109223 | 0.160211 | 0.106130 | 0.103399 | 0.075589 | 0.011327 | 0.012177 | 0.017920 | 0.018605 | 0.327586 | 0.833333 | 0.981818 | 0.796296 | 0.454545 | 0.033333 | -0.100000 | -0.033333 | -0.033333 | -0.100000 | 0.296377 | 0.232779 | 1.152342 | 0.252554 | 0.076061 | 0.328733 | 0.138596 | 0.081416 | 0.075083 | 0.108642 | 0.299422 | 0.948320 | 1.646192 | 0.927857 | 0.673444 | 0.427606 | 0.207382 | 1.427587 | 0.182553 | -0.043269 | 0.577648 | -3.045336 | -6.682989 | -3.372514 | 0.098978 | 0.341046 | 10.872827 | 51.567125 | 21.372289 | -0.027995 | 0.120161 | 0.048099 | 0.113966 | 0.041830 | 0.034588 | 0.032831 | -0.833647 | -0.796085 | -0.904402 | -0.932227 | 1.009285 | 0.645986 | 0.358198 | 0.722727 | 0.995394 | 2.435431 | 3.296827 | 2.019703 | 3.457908 | 3.751185 | 1.714467 | 6.544237 | 7.264410 | 6.807538 | 4.043939 | -0.000436 | 0.001919 | 0.012756 | 0.001517 | 0.000796 | -2.000000e-08 | 1.100000e-07 | 8.800000e-07 | 1.200000e-07 | 6.000000e-08 | 0.154169 | 0.175675 | 0.131685 | 0.145041 | 0.141396 | 2.345330 | 1.454206 | 2.029815 | 1.717249 | 2.059443 | 0.029877 | 0.032109 | 0.030674 | 0.062576 | 0.324707 | 8.555394 | 2.888606 | 0.961880 | 1.213456 | 0.034117 | 0.023638 |
0271389 | 359.98092 | 0.652865 | NaN | NaN | NaN | 48849.324901 | 77854.298779 | 7.187044e+04 | 6.333212e+04 | 5.460789e+04 | NaN | 291.531809 | 136.426346 | 155.161709 | 222.153745 | 687.840468 | NaN | 49320.945937 | 78824.057129 | 7.230736e+04 | 6.410164e+04 | 5.491608e+04 | NaN | 355.036831 | 280.727554 | 302.808418 | 344.397471 | 765.829936 | NaN | 19.59781 | 19.171840 | 19.258650 | 19.395890 | 19.594210 | NaN | 0.006478 | 0.001902 | 0.002344 | 0.003808 | 0.013608 | NaN | 19.58738 | 19.158400 | 19.252070 | 19.382780 | 19.588130 | NaN | 0.007814 | 0.003867 | 0.004547 | 0.005832 | 0.015066 | NaN | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | NaN | 0.506060 | -0.086831 | -0.137316 | -0.160921 | NaN | 0.006753 | 0.003019 | 0.004472 | 0.014196 | NaN | Star | NaN | 0.000000 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | <NA> | 464 | 685 | 52203 | 0.027656 | 0.056467 | 0.033964 | 3894.407106 | 6726.629772 | 2.815442e+03 | 0.966700 | 13395.881279 | 428.826473 | 400.979284 | 733.893590 | 537.121360 | 0.085759 | 0.027452 | 0.024536 | 0.030410 | 0.091534 | 0.005756 | 0.004097 | 0.002611 | 0.001179 | 0.011236 | 0.001800 | 0.000134 | 0.000690 | 0.001046 | 0.002691 | 0.000384 | 0.000304 | 0.000188 | 0.000153 | 0.001317 | 31.360928 | 25.385482 | 8.506283 | 26.412038 | 4.506639 | 2.594933 | 1.812034 | 2.417874 | 0.493405 | 0.927162 | -2.036974 | -3.085754 | -2.850238 | -1.593147 | 2.303191 | 0.865115 | -0.928600 | -0.794408 | 2.780938 | -2.871577 | 0.083625 | 0.020436 | 2.021357e-02 | 0.020953 | 0.061363 | 0.014543 | 0.002019 | 0.000681 | 0.000275 | 0.000964 | 0.002079 | 0.000265 | 0.000314 | 0.000103 | 0.002567 | 0.000707 | 0.000022 | 0.000079 | 0.000092 | 0.000249 | 6.800123 | 25.915992 | 13.872531 | 29.464400 | 9.975824 | 1.694027 | -0.370578 | 1.951843 | -1.944132 | 0.379092 | -2.421081 | 1.421683 | 0.794701 | 1.141263 | 2.694204 | 0.197027 | -0.861673 | -1.568726 | 0.471050 | -1.056306 | 0.070105 | 0.016609 | 1.751555e-02 | 0.018027 | 0.052373 | 0.006444 | 0.001955 | 0.001570 | 0.001223 | 0.002532 | 0.001194 | 0.000441 | 0.000192 | 0.000215 | 0.000921 | 0.000412 | 0.000142 | 0.000151 | 0.000013 | 0.000391 | 7.311038 | 30.640375 | 24.474704 | 17.710612 | 16.832298 | 1.350979 | 2.061168 | 1.344819 | 2.401992 | -1.225512 | 3.088658 | 2.000862 | 2.508822 | 0.383284 | 0.818757 | -1.426423 | -0.271237 | -1.739701 | -1.816670 | 1.199842 | 3.115335 | 3.339667 | 3.575351 | 3.704359 | 3.271407 | 1.038554 | 1.017902 | 0.964577 | 0.978190 | 1.021438 | 1.078696 | 1.018579 | 0.977984 | 1.025239 | 0.997379 | 0.000043 | 0.000003 | 0.000003 | 0.000003 | 0.000026 | -0.005620 | -0.005796 | 0.000470 | -0.000590 | -0.003786 | 0.470875 | 0.113661 | 0.097450 | 0.088941 | 0.382093 | 0.118644 | 0.196721 | 0.311475 | 0.377049 | 0.254237 | 0.094119 | 0.133534 | 0.188502 | 0.106396 | 0.131925 | 0.171574 | 0.248519 | 0.264787 | 0.279666 | 0.204191 | 0.334130 | 0.355460 | 0.370550 | 0.465098 | 0.293789 | 0.513566 | 0.484704 | 0.528046 | 0.523567 | 0.387523 | 0.748043 | 0.633131 | 0.693800 | 0.724698 | 0.707084 | -9.300000e-06 | -0.000002 | 0.000016 | 0.000011 | 0.000002 | 0.335029 | 0.053404 | 0.048027 | 0.141555 | 0.213026 | 0.050968 | 0.020456 | 0.024292 | 0.033302 | 0.056990 | 0.677966 | 0.590164 | 0.360656 | 0.327869 | 0.644068 | 0.033333 | 0.100000 | 0.033333 | -0.033333 | 0.033333 | 0.892854 | 0.168879 | 0.106714 | 0.093059 | 0.661470 | 0.287679 | 0.105503 | 0.117048 | 0.131128 | 0.352213 | 2.283128 | 0.312337 | 0.407321 | 0.279854 | 0.761498 | -0.054771 | -0.019150 | 0.027962 | 0.077000 | 0.119618 | -2.512992 | -1.485583 | -0.249957 | -0.130027 | -1.473776 | 11.186223 | 5.342639 | 0.405382 | -0.315281 | 5.568996 | 0.147088 | 0.037726 | 0.038699 | 0.041392 | 0.127224 | -0.114619 | -0.895329 | -0.900965 | -0.897053 | -0.149659 | 0.742126 | 0.895528 | 0.993488 | 1.003835 | 0.849841 | 1.946030 | 3.610405 | 3.614440 | 3.542608 | 2.203727 | 15.766159 | 2.508530 | 3.038078 | 2.029591 | 2.644706 | 0.019628 | 0.000696 | 0.000920 | 0.000915 | 0.009523 | 8.700000e-07 | 3.000000e-08 | 4.000000e-08 | 4.000000e-08 | 4.200000e-07 | 0.120839 | 0.168678 | 0.187505 | 0.128585 | 0.158396 | 2.126834 | 2.225141 | 2.210442 | 2.186761 | 2.023726 | 0.058902 | 0.242187 | 0.034497 | 0.210657 | 0.145120 | 4.915713 | 0.018316 | 1.949530 | 0.051217 | 0.686231 | 0.027264 |
0271390 | 359.97467 | -1.066557 | 14.123035 | -6.600603 | -0.013308 | 58226.877642 | 196208.333415 | 3.151411e+05 | 3.634721e+05 | 3.904259e+05 | 386038.526191 | 336.538277 | 176.139373 | 238.635004 | 284.737560 | 391.672093 | 1157.866247 | 57822.261087 | 193323.677945 | 3.125762e+05 | 3.612207e+05 | 3.864206e+05 | 377835.751201 | 414.728788 | 168.305007 | 250.304491 | 379.888888 | 572.420765 | 1887.447062 | 19.40718 | 18.168272 | 17.653803 | 17.498888 | 17.421219 | 17.433489 | 0.006274 | 0.000974 | 0.000822 | 0.000850 | 0.001089 | 0.003252 | 19.41475 | 18.184353 | 17.662676 | 17.505634 | 17.432415 | 17.456808 | 0.007786 | 0.000945 | 0.000869 | 0.001141 | 0.001607 | 0.005410 | 0.0 | 0.011742 | 0.002451 | 0.008652 | 0.012358 | 0.144320 | 1.318985 | 0.514469 | 0.154915 | 0.077669 | -0.012270 | 0.006351 | 0.001275 | 0.001183 | 0.001382 | 0.003434 | Star | NaN | 0.000000 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 114 | 1091 | 52902 | 0.147567 | 0.027901 | 0.081723 | 10795.856574 | 18759.841927 | 3.118562e+02 | 7234.038051 | 288.249310 | 0.745502 | 2782.532404 | 1216.675112 | 4025.346049 | 0.067701 | 0.031648 | 0.017832 | 0.028988 | 0.034787 | 0.002850 | 0.002975 | 0.003410 | 0.003147 | 0.002162 | 0.001387 | 0.000799 | 0.000353 | 0.000465 | 0.000747 | 0.000472 | 0.000250 | 0.000268 | 0.000185 | 0.000182 | 16.622884 | 3.013541 | 22.457930 | 11.419543 | 29.008176 | 1.256466 | 1.731638 | 2.800763 | 1.082790 | 1.004401 | 2.158424 | -2.381636 | -0.861027 | 2.246314 | -2.231599 | -1.982340 | -0.686695 | -0.301330 | -2.434347 | 0.500951 | 0.054560 | 0.027086 | 1.305491e-02 | 0.026558 | 0.023021 | 0.005701 | 0.002115 | 0.000636 | 0.002372 | 0.000847 | 0.001061 | 0.000474 | 0.000286 | 0.000573 | 0.000245 | 0.000239 | 0.000142 | 0.000090 | 0.000160 | 0.000079 | 3.542381 | 11.262393 | 16.766711 | 1.002731 | 18.488068 | 2.511450 | 0.822600 | -0.387496 | 1.538420 | 1.800560 | -2.437052 | 2.612016 | 2.802031 | 1.935085 | -1.326998 | 1.123629 | -1.814400 | -2.955947 | -2.598134 | -2.419319 | 0.047071 | 0.024947 | 1.032311e-02 | 0.135437 | 0.018668 | 0.000975 | 0.001139 | 0.000694 | 0.106774 | 0.000660 | 0.000917 | 0.000430 | 0.000295 | 0.087695 | 0.000212 | 0.000212 | 0.000118 | 0.000047 | 0.050082 | 0.000097 | 29.974516 | 1.373557 | 18.824192 | 13.563423 | 32.377205 | 0.261512 | 0.113457 | -0.051408 | 1.551414 | -0.505649 | 1.837342 | 1.717850 | 1.921156 | 3.026279 | 0.678476 | 2.713529 | 2.706397 | 2.636471 | -1.779049 | -1.122446 | 2.815443 | 2.719889 | 3.179630 | 1.926369 | 3.639889 | 0.993550 | 1.005041 | 0.980678 | 0.995311 | 0.896094 | 0.977483 | 1.025819 | 0.940343 | 1.459028 | 0.956949 | 0.000029 | 0.000009 | 0.000001 | 0.000020 | 0.000003 | -0.005754 | -0.003722 | -0.003744 | -0.004045 | -0.000761 | 0.489872 | 0.222805 | 0.083009 | 0.320217 | 0.119581 | 0.240741 | 0.094340 | 0.230769 | 0.020000 | 0.226415 | 0.127227 | 0.061580 | 0.129417 | 0.174800 | 0.103412 | 0.207557 | 0.111888 | 0.240844 | 0.298839 | 0.185875 | 0.270546 | 0.201269 | 0.371345 | 0.484824 | 0.274378 | 0.432633 | 0.397461 | 0.516446 | 0.601171 | 0.413986 | 0.633878 | 0.638186 | 0.707457 | 0.803790 | 0.543017 | 1.830000e-05 | 0.000010 | -0.000003 | -0.000002 | -0.000016 | 0.211109 | 0.196668 | 0.047228 | 0.295708 | 0.121199 | 0.049787 | 0.015057 | 0.011363 | 0.013417 | 0.018822 | 0.759259 | 0.811321 | 0.673077 | 0.980000 | 0.603774 | 0.166667 | 0.033333 | 0.100000 | 0.033333 | 0.100000 | 0.949866 | 0.394289 | 0.124178 | 0.728577 | 0.129292 | 0.306527 | 0.130465 | 0.060069 | 0.060807 | 0.136541 | 1.815737 | 1.664602 | -0.556924 | 2.420012 | 0.664704 | 0.424288 | -0.127063 | 0.786323 | 0.056595 | 0.075107 | -2.717639 | -3.444700 | -2.252920 | -6.284135 | -0.536066 | 12.020285 | 18.935806 | 8.454215 | 46.368981 | 1.952474 | 0.152410 | 0.062654 | 0.028283 | 0.085349 | 0.042963 | -0.156624 | -0.795743 | -0.926226 | -0.841389 | -0.848115 | 0.714381 | 0.651424 | 0.807338 | 0.410812 | 0.900022 | 1.880220 | 2.968701 | 3.921625 | 2.463289 | 3.495311 | 8.853320 | 12.134792 | 1.613586 | 18.479451 | 3.874493 | 0.020923 | 0.003521 | 0.000307 | 0.007081 | 0.001361 | 1.020000e-06 | 2.000000e-07 | 2.000000e-08 | 4.600000e-07 | 8.000000e-08 | 0.178565 | 0.188643 | 0.171811 | 0.141249 | 0.147907 | 1.258739 | 1.690556 | 1.657900 | 2.058601 | 2.193501 | 0.170739 | 0.018121 | 0.008570 | 0.057029 | 0.042912 | 0.975324 | 5.251484 | 6.415285 | 0.447885 | 1.378181 | 0.039193 |
0271391 | 359.97300 | 0.203557 | 9.591976 | -3.451329 | -0.012580 | 56604.337841 | 137549.637098 | 1.816154e+05 | 1.948576e+05 | 1.999601e+05 | 192414.700415 | 373.645494 | 142.514416 | 153.336214 | 181.999459 | 276.628670 | 1173.991063 | 56216.171259 | 135464.359811 | 1.799253e+05 | 1.923424e+05 | 1.964709e+05 | 189718.747536 | 449.633549 | 152.372613 | 182.104973 | 277.541501 | 514.453020 | 1981.721606 | 19.43786 | 18.553917 | 18.252184 | 18.175772 | 18.147707 | 18.189470 | 0.007166 | 0.001124 | 0.000916 | 0.001014 | 0.001501 | 0.006604 | 19.44533 | 18.570503 | 18.262335 | 18.189878 | 18.166820 | 18.204790 | 0.008683 | 0.001221 | 0.001098 | 0.001566 | 0.002839 | 0.011282 | 0.0 | 0.016235 | 0.007502 | 0.013772 | 0.015777 | 0.412266 | 0.964024 | 0.301733 | 0.076412 | 0.028065 | -0.041763 | 0.007255 | 0.001451 | 0.001367 | 0.001812 | 0.006793 | Star | NaN | 0.000000 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 690 | 4216 | 55477 | 0.330060 | 0.686030 | 1.141392 | 5866.936189 | 51241.893766 | 3.849883e+00 | 3.183538 | 308.397120 | 0.621720 | 5660.780677 | 5182.637331 | 8120.975846 | 0.072021 | 0.039824 | 0.025629 | 0.028717 | 0.034787 | 0.009823 | 0.007883 | 0.002304 | 0.002474 | 0.005400 | 0.001113 | 0.000842 | 0.000285 | 0.000570 | 0.000577 | 0.000115 | 0.000252 | 0.000090 | 0.000089 | 0.000064 | 18.783281 | 20.851171 | 9.026542 | 31.480394 | 21.203211 | 2.828571 | 1.721295 | 2.187130 | 0.934707 | -2.187591 | -1.429864 | -2.625213 | -1.967833 | 2.696984 | -1.095929 | -0.829054 | -0.810167 | 0.807612 | -2.423306 | 3.076315 | 0.056650 | 0.030470 | 2.000000e-08 | 0.025418 | 0.024585 | 0.004618 | 0.004062 | 0.000000 | 0.002349 | 0.000409 | 0.001146 | 0.000848 | 0.000000 | 0.000569 | 0.000278 | 0.000086 | 0.000220 | 0.000000 | 0.000081 | 0.000076 | 2.619925 | 30.574655 | 2.016725 | 0.888059 | 6.961652 | 1.135364 | 2.267121 | -0.102280 | 0.900112 | 0.505213 | 2.997585 | -2.122545 | -0.269059 | 2.314287 | 1.987972 | -2.230700 | -0.395149 | -0.379588 | -2.959296 | 0.889247 | 0.045785 | 0.025396 | 2.000000e-08 | 0.024321 | 0.019093 | 0.004335 | 0.001419 | 0.000000 | 0.002334 | 0.001279 | 0.001487 | 0.000546 | 0.000000 | 0.000516 | 0.000238 | 0.000166 | 0.000041 | 0.000000 | 0.000111 | 0.000057 | 29.118797 | 15.714504 | 2.016725 | 4.513138 | 23.442467 | 1.248861 | 1.702365 | -0.102280 | 1.466597 | 0.540395 | -1.982699 | -2.967618 | -0.269060 | 1.758336 | -1.238976 | 2.807839 | 3.028002 | -0.379589 | 3.115840 | 1.623746 | 3.544123 | 3.252194 | 1.850075 | 2.504960 | 4.088142 | 0.990121 | 1.036413 | 0.938706 | 0.957584 | 0.918261 | 0.975472 | 0.937877 | 0.938706 | 0.957504 | 0.833768 | 0.000027 | 0.000010 | 0.000031 | 0.000016 | 0.000005 | -0.000568 | -0.003769 | 0.000161 | -0.004443 | 0.005301 | 0.425307 | 0.202355 | 0.585855 | 0.345649 | 0.131723 | 0.230769 | 0.108108 | 0.064935 | 0.105263 | 0.341772 | 0.118754 | 0.079685 | 0.116909 | 0.115084 | 0.150143 | 0.204306 | 0.122447 | 0.239926 | 0.213198 | 0.342260 | 0.341930 | 0.210397 | 0.355669 | 0.318284 | 0.435951 | 0.529842 | 0.319669 | 0.581774 | 0.440591 | 0.569840 | 0.687036 | 0.526640 | 0.792478 | 0.644410 | 0.776247 | -1.154000e-05 | -0.000012 | -0.000033 | 0.000001 | -0.000016 | 0.773506 | 0.323535 | 0.220584 | 0.239068 | 0.151695 | 0.067451 | 0.017444 | 0.017298 | 0.020123 | 0.035212 | 0.576923 | 0.743243 | 0.987013 | 0.934211 | 0.417722 | 0.100000 | 0.033333 | 0.100000 | 0.033333 | 0.100000 | 0.622016 | 0.344113 | 1.745732 | 0.771946 | 0.152362 | 0.337687 | 0.167918 | 0.084868 | 0.111526 | 0.152522 | 1.764003 | 1.631945 | 2.203572 | 2.224472 | 0.278115 | 0.063463 | 0.305433 | 1.261965 | 0.157909 | 0.357657 | -0.790781 | -2.921025 | -7.921338 | -6.036430 | 0.776552 | 4.203597 | 10.245625 | 70.685035 | 47.787457 | 0.633229 | 0.125892 | 0.070536 | 0.127315 | 0.079078 | 0.054391 | -0.081350 | -0.755989 | -0.794709 | -0.810022 | -0.785029 | 0.881693 | 0.660619 | 0.353309 | 0.534103 | 0.998008 | 2.265797 | 2.843115 | 1.751516 | 2.568464 | 3.281653 | 7.321677 | 9.028815 | 12.637098 | 14.650283 | 2.209808 | 0.011105 | 0.004588 | 0.016063 | 0.005962 | 0.001299 | 3.700000e-07 | 1.800000e-07 | 6.200000e-07 | 2.400000e-07 | 5.000000e-08 | 0.078550 | 0.147950 | 0.110191 | 0.132400 | 0.173646 | 2.464347 | 1.702623 | 2.105601 | 1.771717 | 1.809222 | 0.183350 | 0.055463 | 0.165852 | 0.318518 | 0.027876 | 0.441824 | 2.040820 | 0.051330 | 0.018316 | 5.699177 | 0.033451 |
0271392 | 359.97109 | -1.007636 | 4.124890 | -3.065300 | NaN | -69224.617745 | 1871.996571 | 7.629826e+03 | 2.748630e+04 | 4.817328e+04 | 55599.520852 | 42669.094349 | 81.535894 | 89.749332 | 152.700499 | 267.518464 | 1133.339315 | -83064.453315 | 1577.575848 | 7.479136e+03 | 2.677157e+04 | 4.667340e+04 | 54018.167714 | 43381.628696 | 114.878110 | 175.594532 | 302.844986 | 521.101272 | 1765.992681 | NaN | 23.219303 | 21.693779 | 20.302275 | 19.693050 | 19.537388 | NaN | 0.046289 | 0.012697 | 0.006015 | 0.006013 | 0.021909 | NaN | 23.405090 | 21.715437 | 20.330881 | 19.727392 | 19.568716 | NaN | 0.076317 | 0.025196 | 0.012213 | 0.012055 | 0.034928 | 0.0 | 0.398209 | 0.019596 | 0.016319 | 0.016609 | 0.090982 | NaN | 1.525524 | 1.391504 | 0.609225 | 0.155662 | 0.670901 | 0.048984 | 0.014124 | 0.008529 | 0.022938 | Star | NaN | 0.000000 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 646 | 7850 | 56956 | 0.000001 | NaN | 0.000016 | 341.703289 | NaN | 3.264001e+06 | 0.043432 | NaN | 0.000040 | 0.574150 | NaN | 1.883511 | 1.757934 | 0.294156 | 0.077142 | 0.035747 | 0.099399 | 0.225284 | 0.021059 | 0.003966 | 0.002971 | 0.001661 | 0.025566 | 0.002426 | 0.000775 | 0.001049 | 0.001634 | 0.015874 | 0.002977 | 0.000154 | 0.000144 | 0.000465 | 16.708076 | 2.524494 | 18.664030 | 17.869122 | 8.970319 | 0.917918 | 2.527558 | -0.675472 | 2.212460 | -2.728763 | 2.383380 | 2.937249 | -1.955872 | 1.790559 | -0.552392 | -0.998204 | 2.553825 | 1.641681 | 3.062710 | -2.283831 | 0.873789 | 0.158361 | 4.533017e-02 | 0.024517 | 0.076980 | 0.070861 | 0.003599 | 0.002462 | 0.001179 | 0.002563 | 0.013577 | 0.001363 | 0.000466 | 0.000353 | 0.000188 | 0.005209 | 0.000419 | 0.000167 | 0.000181 | 0.001084 | 6.411031 | 23.386809 | 7.743794 | 31.375025 | 11.668926 | -2.988122 | -0.815338 | -2.984790 | 2.964469 | -0.854343 | -2.656093 | 1.322262 | 2.547645 | -2.256767 | 2.175672 | 2.771855 | 1.922124 | 0.936027 | -0.181931 | -1.753289 | 0.460523 | 0.107227 | 3.478447e-02 | 0.015969 | 0.043055 | 0.008874 | 0.006299 | 0.001635 | 0.003527 | 0.003922 | 0.004276 | 0.002069 | 0.000526 | 0.000459 | 0.000682 | 0.001207 | 0.000387 | 0.000081 | 0.000051 | 0.000159 | 25.100701 | 31.868194 | 6.817927 | 17.806417 | 28.465528 | 0.674840 | -2.196680 | 1.571518 | 1.181693 | -0.132410 | 2.846809 | -3.070055 | 0.812856 | 2.420456 | 2.135098 | 2.883993 | 0.569111 | -0.930729 | 1.520266 | 3.042030 | 3.410817 | 3.128307 | 2.901965 | 2.764474 | 2.907295 | 0.928470 | 0.964422 | 0.925130 | 1.122049 | 1.021980 | 0.873569 | 0.934536 | 0.933027 | 0.988702 | 0.947101 | 0.001377 | 0.000070 | 0.000007 | 0.000002 | 0.000014 | 0.197956 | 0.054935 | 0.001537 | -0.007648 | -0.000296 | 2.646619 | 0.839132 | 0.244440 | 0.089064 | 0.290756 | 0.258065 | 0.322581 | 0.387097 | 0.310345 | 0.322581 | 0.353973 | 0.084383 | 0.108346 | 0.125094 | 0.094702 | 0.398541 | 0.186532 | 0.242903 | 0.351733 | 0.213687 | 0.455104 | 0.325647 | 0.365755 | 0.481068 | 0.279687 | 0.558285 | 0.542239 | 0.505460 | 0.559565 | 0.601512 | 0.751585 | 0.642372 | 0.710756 | 0.679114 | 0.845909 | -4.479500e-04 | 0.000171 | -0.000014 | -0.000004 | -0.000050 | 1.400618 | 0.326454 | 0.092420 | 0.072053 | 0.130406 | 1.239994 | 0.188972 | 0.050531 | 0.024632 | 0.046085 | 0.096774 | 0.483871 | 0.483871 | 0.310345 | 0.516129 | 0.033333 | 0.100000 | 0.033333 | 0.066667 | -0.100000 | 19.184174 | 0.948554 | 0.265660 | 0.120710 | 0.348656 | 7.085468 | 1.140939 | 0.287209 | 0.105975 | 0.293619 | 1.883783 | -0.166083 | -0.510187 | -0.983182 | 0.097728 | -0.359071 | 0.246605 | 0.276920 | 0.006163 | 0.095525 | -0.105579 | 0.536360 | 1.084132 | -0.978634 | -0.177473 | -1.112887 | 1.526219 | 2.060896 | 1.783666 | 1.754256 | 1.412473 | 0.365416 | 0.105394 | 0.038795 | 0.112456 | 14.316072 | 2.164092 | -0.216810 | -0.885184 | -0.104464 | 0.985680 | 0.916667 | 0.915624 | 0.973869 | 0.910155 | -1.453326 | 1.147363 | 2.604155 | 3.591221 | 2.437603 | 6.818414 | 0.938055 | 0.718650 | 0.524245 | 1.461340 | 1.618950 | -0.080069 | -0.001857 | -0.001143 | 0.003822 | 8.864000e-05 | -4.800000e-06 | -1.300000e-07 | -9.000000e-08 | 3.200000e-07 | 0.174398 | 0.238544 | 0.209646 | 0.220836 | 0.180493 | 2.228439 | 2.023039 | 2.546435 | 2.395137 | 1.886600 | 0.330013 | 0.006272 | 0.000009 | 0.000001 | 0.013985 | 35.063518 | 1695.317980 | 0.897756 | 61.433233 | 10.639567 | 0.042526 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
1468017 | 309.23870 | 0.028991 | -0.662283 | 0.020786 | 0.442488 | 17994.203485 | 27268.917052 | 3.142641e+04 | 4.412361e+04 | 6.025053e+04 | NaN | 840.888061 | 330.659188 | 453.818901 | 635.652520 | 2865.202526 | NaN | 20141.763745 | 31723.140172 | 3.907511e+04 | 5.721970e+04 | 7.828750e+04 | NaN | 1033.235168 | 421.199788 | 592.484241 | 831.089567 | 3661.875674 | NaN | 20.68143 | 20.310740 | 20.156620 | 19.788150 | 19.487930 | NaN | 0.050663 | 0.013162 | 0.015673 | 0.015634 | 0.051420 | NaN | 20.55918 | 20.146510 | 19.920180 | 19.506060 | 19.204510 | NaN | 0.055630 | 0.014413 | 0.016459 | 0.015766 | 0.050661 | NaN | 0.0 | 0.000000 | 1.000000 | 1.000000 | 1.000000 | NaN | 0.451338 | 0.154067 | 0.368441 | 0.338225 | NaN | 0.052418 | 0.020473 | 0.022147 | 0.053949 | NaN | Qso | NaN | 0.442569 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | <NA> | 301 | 1117 | 52885 | 0.001658 | 157.665964 | 1.686491 | 11808.289927 | 2.918011 | 1.166877e-01 | 0.226252 | 53990.898110 | 1772.358819 | 216.197917 | 34060.346688 | 4252.394697 | 0.118145 | 0.066106 | 0.079768 | 0.074369 | 0.109995 | 0.007012 | 0.008669 | 0.005027 | 0.007341 | 0.010261 | 0.001312 | 0.001222 | 0.001648 | 0.000830 | 0.003015 | 0.001328 | 0.000461 | 0.000621 | 0.000613 | 0.001291 | 23.943282 | 30.005356 | 6.535160 | 26.240096 | 18.299638 | 1.115732 | 1.453053 | 1.591550 | 2.604331 | 0.743958 | 1.147619 | -2.508004 | 0.947574 | 0.003693 | 0.162353 | -2.652867 | -2.011022 | 0.535263 | 0.873255 | -0.056988 | 0.071870 | 0.056238 | 5.555584e-02 | 0.057301 | 0.069779 | 0.004924 | 0.005322 | 0.002752 | 0.004854 | 0.003771 | 0.001614 | 0.001562 | 0.000053 | 0.000679 | 0.000398 | 0.000557 | 0.000256 | 0.000489 | 0.000200 | 0.000164 | 29.119755 | 21.753474 | 18.017381 | 16.011315 | 9.136434 | -0.298428 | 2.022570 | -0.344032 | 2.578638 | 1.078315 | 2.770159 | -1.996590 | -1.138063 | -1.161240 | -2.449204 | -0.344762 | 1.220506 | 0.959394 | 2.167365 | 0.014427 | 0.067934 | 0.039770 | 4.482285e-02 | 0.048003 | 0.063702 | 0.010151 | 0.002060 | 0.002563 | 0.008099 | 0.002484 | 0.000642 | 0.000710 | 0.000211 | 0.002289 | 0.002021 | 0.000507 | 0.000112 | 0.000129 | 0.000554 | 0.000090 | 30.991141 | 18.139023 | 1.844936 | 21.053356 | 10.944690 | 2.093385 | -2.237273 | 0.434765 | 2.893095 | -1.321719 | -2.810590 | -0.499360 | 1.114431 | 2.455773 | 1.428864 | 2.546075 | 1.816015 | 1.573900 | 1.888571 | -2.903962 | 3.506426 | 3.088294 | 3.312144 | 3.352258 | 3.460452 | 0.923960 | 1.117644 | 0.963872 | 1.007617 | 0.935207 | 0.999937 | 0.984851 | 0.973749 | 0.961108 | 0.945413 | 0.000021 | 0.000013 | 0.000014 | 0.000014 | 0.000025 | -0.010464 | -0.008751 | -0.011574 | -0.001052 | -0.020184 | 0.273651 | 0.272655 | 0.235620 | 0.217542 | 0.296439 | 0.377778 | 0.181818 | 0.244444 | 0.400000 | 0.340909 | 0.188373 | 0.068371 | 0.110770 | 0.322155 | 0.157569 | 0.303714 | 0.144456 | 0.216280 | 0.466907 | 0.210557 | 0.436121 | 0.242260 | 0.376974 | 0.609195 | 0.337661 | 0.599003 | 0.305606 | 0.544107 | 0.719546 | 0.484839 | 0.903266 | 0.407209 | 0.731029 | 0.849745 | 0.621334 | 1.100000e-07 | 0.000049 | -0.000013 | -0.000012 | -0.000029 | 0.257301 | 0.193310 | 0.139174 | 0.123630 | 0.175040 | 0.084204 | 0.047152 | 0.065647 | 0.085737 | 0.102103 | 0.222222 | 0.568182 | 0.400000 | 0.222222 | 0.409091 | 0.033333 | -0.033333 | -0.166667 | 0.166667 | -0.100000 | 0.279530 | 0.470031 | 0.330856 | 0.224588 | 0.383073 | 0.412698 | 0.345072 | 0.298856 | 0.256603 | 0.480791 | -0.029264 | 0.994183 | 1.560730 | 1.483853 | 0.470530 | 0.415394 | 1.104482 | 0.322692 | 0.431435 | 0.186821 | -0.177306 | -1.848359 | -0.767855 | 0.231027 | -0.377397 | -0.552926 | 5.457899 | 0.931366 | -0.568896 | 0.113247 | 0.138410 | 0.103095 | 0.098554 | 0.100866 | 0.140055 | 0.302686 | -0.425686 | -0.280287 | -0.108967 | 0.295360 | 1.029259 | 0.798986 | 0.953401 | 1.095929 | 1.003425 | 2.209172 | 2.430920 | 2.547728 | 2.603851 | 2.167458 | 1.697063 | 15.348310 | 11.516030 | 10.826588 | 2.135317 | 0.002383 | 0.009607 | 0.009015 | 0.009300 | 0.010184 | 1.200000e-07 | 5.300000e-07 | 4.900000e-07 | 5.300000e-07 | 6.100000e-07 | 0.166675 | 0.182525 | 0.234406 | 0.208505 | 0.209825 | 1.742694 | 1.620858 | 1.626095 | 1.749285 | 1.639964 | 0.014565 | 0.022847 | 0.078444 | 0.062067 | 0.084517 | 87.726218 | 40.008760 | 2.298066 | 4.310347 | 2.627439 | 0.085374 |
1468018 | 309.22960 | 0.171063 | 0.532933 | -0.023733 | 0.517200 | 58302.017211 | 61925.019907 | 6.830879e+04 | 6.212039e+04 | 6.179836e+04 | NaN | 1013.180546 | 386.147718 | 510.050231 | 638.044346 | 2865.021901 | NaN | 57662.689860 | 62019.204528 | 6.851232e+04 | 6.237270e+04 | 6.194137e+04 | NaN | 1117.087553 | 461.317152 | 596.951683 | 728.222725 | 3003.253467 | NaN | 19.40578 | 19.420370 | 19.313830 | 19.416860 | 19.460500 | NaN | 0.018865 | 0.006770 | 0.008106 | 0.011149 | 0.050139 | NaN | 19.41775 | 19.418720 | 19.310600 | 19.412460 | 19.458000 | NaN | 0.021031 | 0.008076 | 0.009459 | 0.012674 | 0.052438 | NaN | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | NaN | 0.065456 | 0.106526 | -0.103106 | -0.005643 | NaN | 0.020046 | 0.010562 | 0.013787 | 0.051556 | NaN | Qso | NaN | 1.110641 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | <NA> | 354 | 1117 | 52885 | 1.897691 | 0.800918 | 0.536513 | 0.004062 | 0.004426 | 4.191075e-03 | 841.379095 | 441.405419 | 277.195879 | 6571.325342 | 1354.693991 | 1703.822432 | 0.205902 | 0.179013 | 0.117750 | 0.108634 | 0.088397 | 0.033625 | 0.014283 | 0.021411 | 0.010015 | 0.008837 | 0.003459 | 0.002366 | 0.004247 | 0.002206 | 0.001636 | 0.001910 | 0.000971 | 0.001618 | 0.000568 | 0.000181 | 0.001085 | 0.001085 | 0.001085 | 0.001085 | 12.239978 | -2.609709 | 2.912295 | -2.736895 | -2.947658 | -2.129578 | 0.711405 | 1.109920 | 1.452175 | 1.844308 | 0.110901 | -2.633205 | 2.850055 | 3.136856 | -3.086786 | 0.423779 | 0.077102 | 0.046874 | 2.834943e-02 | 0.032937 | 0.056822 | 0.002598 | 0.002730 | 0.001884 | 0.004968 | 0.003657 | 0.002219 | 0.001365 | 0.000642 | 0.000361 | 0.000275 | 0.000428 | 0.000237 | 0.000086 | 0.000188 | 0.000559 | 6.398674 | 28.530733 | 15.927267 | 21.217587 | 4.722602 | -0.255515 | 2.598775 | -0.267996 | -2.595866 | -2.038785 | 2.591071 | 3.041575 | 0.840007 | -3.122019 | -0.836764 | 1.808899 | 1.797298 | -2.920232 | -0.376355 | -1.871479 | 0.055867 | 0.043726 | 1.931029e-02 | 0.030143 | 0.047416 | 0.005468 | 0.004863 | 0.003194 | 0.001835 | 0.000984 | 0.000256 | 0.000517 | 0.000120 | 0.000568 | 0.000497 | 0.000414 | 0.000226 | 0.000100 | 0.000210 | 0.000277 | 18.729539 | 12.978474 | 0.389411 | 3.097491 | 1.653838 | 2.788992 | -2.300185 | -0.338623 | 1.053962 | 0.298855 | 2.201297 | -2.190385 | -2.114981 | -2.855240 | 1.155340 | -2.180461 | -1.211002 | -2.835941 | -0.894978 | 1.239837 | 4.162230 | 4.393826 | 4.538836 | 4.232913 | 3.315121 | 0.845925 | 0.700195 | 0.744376 | 0.779161 | 0.909964 | 0.767153 | 0.733933 | 0.693420 | 0.804102 | 0.958531 | 0.000024 | 0.000012 | 0.000004 | 0.000005 | 0.000019 | 0.024806 | -0.002134 | 0.003222 | 0.002783 | -0.016505 | 0.387600 | 0.275675 | 0.178959 | 0.183813 | 0.280345 | 0.375000 | 0.416667 | 0.354167 | 0.382979 | 0.354167 | 0.096077 | 0.143660 | 0.163974 | 0.133535 | 0.122831 | 0.297264 | 0.288182 | 0.304214 | 0.211255 | 0.181013 | 0.470164 | 0.473413 | 0.405834 | 0.390981 | 0.297632 | 0.610263 | 0.627020 | 0.605184 | 0.608123 | 0.496641 | 0.818516 | 0.855191 | 0.798959 | 0.841186 | 0.766617 | -2.227000e-05 | 0.000037 | 0.000025 | 0.000027 | 0.000046 | 0.129831 | 0.272989 | 0.118297 | 0.078878 | 0.367989 | 0.104694 | 0.095423 | 0.056949 | 0.057869 | 0.062551 | 0.375000 | 0.312500 | 0.354167 | 0.404255 | 0.437500 | 0.033333 | -0.033333 | 0.033333 | -0.166667 | 0.033333 | 0.384958 | 0.256928 | 0.179423 | 0.184840 | 0.283508 | 0.459124 | 0.400733 | 0.254357 | 0.237523 | 0.385478 | 1.291871 | 1.766413 | 0.508097 | 0.537821 | 0.044167 | 0.779065 | 1.430244 | 1.726261 | 1.268742 | 0.199607 | 0.082305 | 0.022619 | 0.058135 | 0.148859 | 0.233059 | -0.031466 | -0.481291 | -0.337741 | -0.079090 | 0.288235 | 0.161129 | 0.134317 | 0.085149 | 0.082704 | 0.123662 | 0.557973 | 0.287531 | -0.353994 | -0.366384 | 0.044065 | 0.992721 | 1.022364 | 1.022761 | 0.999441 | 0.954409 | 2.080271 | 2.255962 | 2.751496 | 2.809766 | 2.374753 | 11.164122 | 54.645052 | 25.415659 | 13.473346 | 1.332243 | 0.025338 | 0.018961 | 0.007272 | 0.006673 | 0.001101 | 1.370000e-06 | 1.030000e-06 | 4.000000e-07 | 3.700000e-07 | 6.000000e-08 | 0.341615 | 0.341128 | 0.331682 | 0.313442 | 0.175390 | 1.044377 | 0.891954 | 0.658078 | 0.793161 | 1.476852 | 0.021202 | 0.051148 | 0.012555 | 0.017048 | 0.024527 | 117.796541 | 15.694906 | 112.661792 | 47.760664 | 13.566240 | 0.082823 |
1468019 | 309.22200 | -0.160658 | -1.460134 | -0.758934 | 0.396559 | 28501.385092 | 32930.588107 | 3.690130e+04 | 5.006247e+04 | 5.114888e+04 | NaN | 386.136291 | 158.283404 | 206.501385 | 304.426799 | 1114.186241 | NaN | 28380.031107 | 33401.401023 | 3.677471e+04 | 5.005832e+04 | 5.108732e+04 | NaN | 430.585253 | 205.464503 | 268.733668 | 393.686038 | 1212.454970 | NaN | 20.18258 | 20.105960 | 19.982310 | 19.651100 | 19.664880 | NaN | 0.014701 | 0.005218 | 0.006074 | 0.006600 | 0.023517 | NaN | 20.18721 | 20.090550 | 19.986040 | 19.651190 | 19.666180 | NaN | 0.016463 | 0.006677 | 0.007932 | 0.008536 | 0.025621 | NaN | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | NaN | 0.156834 | 0.123606 | 0.331176 | 0.023310 | NaN | 0.015608 | 0.008009 | 0.008973 | 0.024555 | NaN | Qso | NaN | 1.775506 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | <NA> | 302 | 1117 | 52885 | 0.739633 | 0.177546 | 0.140664 | 0.000896 | 0.013523 | 1.195596e-02 | 213.720847 | 513.215165 | 507.257670 | 5045.111184 | 807.860345 | 0.510180 | 0.148918 | 0.135026 | 0.262679 | 0.123857 | 0.107137 | 0.012737 | 0.008008 | 0.029495 | 0.015843 | 0.002680 | 0.003516 | 0.001900 | 0.037808 | 0.005104 | 0.001790 | 0.000633 | 0.001074 | 0.014837 | 0.000850 | 0.000227 | 19.014730 | 2.000951 | 0.000255 | 2.000985 | 3.003659 | 2.593629 | 0.302106 | 3.035866 | 0.875070 | 2.049443 | -1.855418 | 2.819227 | 1.287948 | 2.156429 | 2.677678 | -0.190069 | -0.134477 | -0.095421 | -0.463011 | -1.510646 | 0.080189 | 0.052124 | 3.694239e-02 | 0.031140 | 0.073025 | 0.003267 | 0.005340 | 0.006792 | 0.001191 | 0.002444 | 0.000654 | 0.001059 | 0.000410 | 0.000569 | 0.000285 | 0.000473 | 0.000398 | 0.000093 | 0.000059 | 0.000305 | 0.359303 | 12.001477 | 24.550900 | 25.015358 | 29.612731 | 1.251305 | 1.677849 | 2.270504 | 0.986333 | -2.201662 | -0.065493 | 2.292986 | 2.532553 | 1.173995 | -2.501912 | -1.693122 | -1.401796 | 0.623513 | 0.417805 | -1.915202 | 0.070424 | 0.040987 | 2.662948e-02 | 0.023559 | 0.065085 | 0.007990 | 0.002874 | 0.002691 | 0.002274 | 0.002422 | 0.000152 | 0.000597 | 0.000207 | 0.000541 | 0.000551 | 0.000230 | 0.000052 | 0.000126 | 0.000070 | 0.000680 | 25.106844 | 11.520414 | 17.425787 | 3.454329 | 1.230420 | 2.078743 | 0.341660 | 1.992841 | -1.442066 | 1.014817 | 0.651861 | 2.557126 | -2.455214 | 0.409142 | 0.536271 | 1.779728 | -2.460042 | 1.999164 | 0.806654 | 0.771572 | 3.954399 | 4.459454 | 4.556946 | 4.702675 | 3.785923 | 0.906044 | 0.791755 | 0.760617 | 0.743693 | 0.918898 | 0.936344 | 0.832485 | 0.681253 | 0.692148 | 0.937800 | 0.000029 | 0.000010 | 0.000006 | 0.000004 | 0.000025 | 0.008804 | 0.006156 | -0.198535 | 0.009451 | 0.012395 | 0.442917 | 0.344234 | 0.329887 | 0.258027 | 0.367122 | 0.234043 | 0.304348 | 0.244444 | 0.266667 | 0.212766 | 0.114932 | 0.296504 | 0.237074 | 0.212644 | 0.158339 | 0.246375 | 0.415587 | 0.508037 | 0.388412 | 0.281504 | 0.373852 | 0.506396 | 0.701680 | 0.598051 | 0.383790 | 0.519567 | 0.619761 | 0.818352 | 0.725300 | 0.568516 | 0.761608 | 0.696090 | 0.927373 | 0.849069 | 0.679875 | 1.195800e-04 | 0.000113 | -0.000009 | 0.000118 | 0.000112 | 0.384221 | 0.090891 | 0.079603 | 0.038247 | 0.228473 | 0.098904 | 0.081869 | 0.087105 | 0.067537 | 0.103928 | 0.468085 | 0.413043 | 0.400000 | 0.311111 | 0.361702 | 0.100000 | 0.166667 | -0.033333 | 0.100000 | -0.033333 | 0.619262 | 0.478787 | 0.527983 | 0.359395 | 0.459924 | 0.463822 | 0.329422 | 0.251868 | 0.241204 | 0.467768 | 1.132212 | 0.750777 | 0.649467 | -0.199657 | 0.110392 | 0.487515 | 2.038575 | 1.977020 | 2.347024 | 0.776729 | -0.464977 | -0.812922 | -1.134318 | -0.979809 | -0.361376 | 1.526545 | 1.824769 | 3.113470 | 2.371773 | 0.383052 | 0.169693 | 0.134184 | 0.133078 | 0.111634 | 0.152024 | 0.461012 | 0.166628 | 0.176335 | -0.124444 | 0.407300 | 0.944166 | 1.022796 | 0.974918 | 0.963955 | 0.999051 | 1.964447 | 2.226100 | 2.199211 | 2.414888 | 2.087862 | 10.436658 | 42.737051 | 41.872080 | 25.045837 | 3.784576 | 0.025407 | 0.018023 | 0.018775 | 0.012841 | 0.010462 | 1.330000e-06 | 9.700000e-07 | 1.050000e-06 | 7.400000e-07 | 5.800000e-07 | 0.288936 | 0.348581 | 0.373660 | 0.375174 | 0.317573 | 1.491056 | 0.746232 | 0.614257 | 0.406169 | 1.064834 | 0.074849 | 0.232625 | 0.081062 | 0.066099 | 0.012657 | 11.044441 | 2.410207 | 20.050749 | 22.582279 | 423.371702 | 0.093687 |
1468020 | 309.21940 | -0.479245 | 0.036148 | -0.022135 | -0.220993 | 17663.977528 | 25333.897183 | 3.227447e+04 | 3.182550e+04 | 4.002968e+04 | NaN | 398.222241 | 159.416918 | 209.279951 | 308.870174 | 1116.490649 | NaN | 17754.149854 | 25769.644397 | 3.277461e+04 | 3.282450e+04 | 4.067704e+04 | NaN | 429.966222 | 193.027958 | 263.115830 | 362.337906 | 1196.564096 | NaN | 20.70151 | 20.390630 | 20.127720 | 20.142670 | 19.929070 | NaN | 0.024440 | 0.006830 | 0.007038 | 0.010528 | 0.030004 | NaN | 20.69599 | 20.372120 | 20.111030 | 20.109140 | 19.911810 | NaN | 0.026254 | 0.008130 | 0.008713 | 0.011976 | 0.031653 | NaN | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | NaN | 0.391534 | 0.262893 | -0.015210 | 0.249017 | NaN | 0.025413 | 0.009810 | 0.012673 | 0.032064 | NaN | Qso | NaN | 0.930411 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | <NA> | 304 | 1117 | 52885 | 0.201489 | 1.363053 | 0.078490 | 0.000202 | 0.001060 | 1.361463e-04 | 89.415539 | 605.093270 | 46.875148 | 996.115480 | 2665.694906 | 1678.072774 | 0.467674 | 0.378533 | 0.329328 | 0.316324 | 0.283578 | 0.061129 | 0.067962 | 0.066512 | 0.054438 | 0.047644 | 0.020499 | 0.011226 | 0.011250 | 0.009613 | 0.013165 | 0.003942 | 0.005307 | 0.003884 | 0.003736 | 0.005010 | 1.000484 | 1.000518 | 0.000458 | 0.000424 | 0.000357 | -3.005833 | 2.687900 | -2.957755 | -2.823840 | -3.042463 | 1.608064 | 1.925203 | 1.391874 | 1.603074 | 1.322838 | -1.757516 | -1.761957 | 0.470010 | 0.207547 | -0.495430 | 0.077616 | 0.038788 | 3.779340e-02 | 0.040390 | 0.059346 | 0.008382 | 0.002278 | 0.001225 | 0.002682 | 0.004746 | 0.001446 | 0.000924 | 0.000741 | 0.000506 | 0.001953 | 0.000247 | 0.000071 | 0.000156 | 0.000103 | 0.000114 | 1.525185 | 13.996638 | 15.734695 | 27.800304 | 14.636019 | -0.878518 | -2.006997 | 2.435140 | -0.995988 | -2.080720 | 2.053940 | -2.156458 | 2.955940 | 0.846721 | -0.422632 | -1.645010 | -1.433332 | -0.428857 | -0.402440 | -3.135600 | 0.055498 | 0.028520 | 2.796580e-02 | 0.028851 | 0.047831 | 0.000503 | 0.002538 | 0.001461 | 0.000934 | 0.003186 | 0.000205 | 0.000204 | 0.000243 | 0.000307 | 0.001203 | 0.000130 | 0.000121 | 0.000140 | 0.000135 | 0.000059 | 23.960183 | 16.886483 | 13.154216 | 19.587992 | 3.487881 | -1.566561 | -1.331363 | 3.105135 | -2.509633 | 2.047149 | 0.082870 | 0.867017 | 2.192659 | 2.089162 | -0.750037 | -1.626146 | 0.634092 | 1.067493 | -0.125145 | -3.044556 | 5.512748 | 5.617791 | 5.654212 | 5.316707 | 5.360982 | 0.541849 | 0.505166 | 0.541647 | 0.408227 | 0.591676 | 0.523773 | 0.502023 | 0.524704 | 0.374589 | 0.585923 | 0.000031 | 0.000011 | 0.000011 | 0.000027 | 0.000021 | 0.160885 | 0.088715 | 0.032551 | 0.015681 | -0.012232 | 0.715081 | 0.699245 | 0.557713 | 0.653931 | 0.472645 | 0.403509 | 0.392857 | 0.421053 | 0.464286 | 0.403509 | 0.111188 | 0.078711 | 0.085343 | 0.094661 | 0.196502 | 0.420528 | 0.306760 | 0.180602 | 0.340417 | 0.369828 | 0.617246 | 0.651348 | 0.601022 | 0.628679 | 0.536724 | 0.764011 | 0.849869 | 0.860403 | 0.845367 | 0.765129 | 0.847504 | 0.937627 | 0.932652 | 0.925814 | 0.878853 | 3.768000e-05 | 0.000039 | 0.000014 | -0.000035 | -0.000048 | 0.316883 | 0.086682 | 0.157323 | 0.653931 | 0.469391 | 0.319454 | 0.271051 | 0.238239 | 0.252708 | 0.164942 | 0.280702 | 0.339286 | 0.403509 | 0.357143 | 0.280702 | -0.033333 | -0.033333 | 0.033333 | 0.233333 | -0.033333 | 0.604388 | 0.589960 | 0.481529 | 0.559985 | 0.497787 | 0.969020 | 0.751218 | 0.719737 | 0.721179 | 0.663997 | 0.809259 | 1.191550 | 0.970749 | 1.478578 | 0.035316 | 1.953546 | 3.154672 | 3.219797 | 2.509459 | 1.701879 | 0.484382 | 0.616732 | 0.349345 | 0.506684 | 0.139214 | -0.556336 | 0.064396 | -0.487515 | 0.140554 | -0.827155 | 0.382094 | 0.309613 | 0.270636 | 0.288729 | 0.236794 | 2.716274 | 1.953879 | 1.592260 | 1.783280 | 1.470895 | 1.010060 | 0.991875 | 0.995434 | 0.993235 | 1.054099 | 1.214309 | 1.430231 | 1.519230 | 1.470553 | 1.637130 | 14.678501 | 109.462036 | 103.482726 | 70.572294 | 6.726001 | 0.159873 | 0.103512 | 0.079506 | 0.089199 | 0.045368 | 6.830000e-06 | 4.590000e-06 | 3.560000e-06 | 4.060000e-06 | 2.070000e-06 | 0.364368 | 0.380877 | 0.379780 | 0.318925 | 0.384659 | 0.526571 | 0.304362 | 0.252411 | 0.887076 | 0.589323 | 0.032150 | 0.024506 | 0.017833 | 0.046360 | 0.010816 | 246.515970 | 319.834034 | 446.851609 | 82.040181 | 742.588577 | 0.132956 |
1468021 | 309.21640 | 0.516741 | -0.306719 | -0.511302 | 1.150066 | 25982.198589 | 31090.684004 | 3.381537e+04 | 4.482806e+04 | 4.863596e+04 | NaN | 750.565014 | 316.157364 | 439.970387 | 654.381326 | 2178.868855 | NaN | 26002.322269 | 31301.339295 | 3.367639e+04 | 4.461995e+04 | 4.856614e+04 | NaN | 816.941358 | 362.905065 | 497.835096 | 736.317811 | 2284.366625 | NaN | 20.28299 | 20.168370 | 20.077100 | 19.770960 | 19.719250 | NaN | 0.031342 | 0.011038 | 0.014122 | 0.015842 | 0.048335 | NaN | 20.28215 | 20.161040 | 20.081570 | 19.776010 | 19.720800 | NaN | 0.034087 | 0.012585 | 0.016045 | 0.017909 | 0.050748 | NaN | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | NaN | 0.194886 | 0.091210 | 0.306090 | 0.088519 | NaN | 0.033251 | 0.017929 | 0.021231 | 0.051158 | NaN | Qso | NaN | 1.641482 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | <NA> | 356 | 1117 | 52885 | 87.331947 | 0.455384 | 0.009274 | 0.487933 | 0.002650 | 3.954635e+01 | 29019.253221 | 121.892581 | 0.583733 | 21212.673164 | 1154.429673 | 381.368921 | 0.185746 | 0.142586 | 0.125577 | 0.086346 | 0.096046 | 0.024166 | 0.014164 | 0.014224 | 0.004410 | 0.008721 | 0.007687 | 0.002552 | 0.002201 | 0.001064 | 0.001064 | 0.001152 | 0.001228 | 0.000778 | 0.000334 | 0.000362 | 10.369730 | 0.001511 | 0.001511 | 2.001102 | 32.355523 | -0.578047 | 0.670894 | 0.608868 | -2.935889 | 1.537759 | 0.477211 | -2.778425 | -2.683634 | 2.538220 | -2.155682 | 1.435024 | -0.596669 | -1.084921 | -0.203170 | 0.317129 | 0.136412 | 0.048719 | 4.523347e-02 | 0.042792 | 0.070974 | 0.005474 | 0.001972 | 0.004130 | 0.000825 | 0.004541 | 0.002917 | 0.000937 | 0.001345 | 0.001391 | 0.000524 | 0.000074 | 0.000108 | 0.000311 | 0.000162 | 0.000473 | 31.350804 | 15.027802 | 11.801712 | 16.336110 | 7.939783 | -3.132334 | 0.467444 | -0.843457 | 1.828313 | 1.929485 | -2.793311 | 2.971472 | -2.733785 | -0.311132 | -0.603712 | -0.315200 | -0.416470 | 1.831915 | -0.494099 | -1.213493 | 0.103838 | 0.046216 | 3.082267e-02 | 0.031983 | 0.070274 | 0.006652 | 0.001718 | 0.002389 | 0.002858 | 0.002957 | 0.001790 | 0.000426 | 0.000370 | 0.000571 | 0.001999 | 0.000215 | 0.000200 | 0.000132 | 0.000099 | 0.000614 | 26.406959 | 21.932414 | 25.828718 | 16.015237 | 14.619067 | 2.396828 | -1.310914 | -0.157029 | -0.753789 | 2.385869 | -2.034262 | -2.682885 | -1.855232 | -2.283703 | -3.093259 | 2.061525 | -2.248568 | -0.475976 | -1.029674 | -2.353805 | 3.254399 | 4.348755 | 4.921343 | 4.676013 | 3.513592 | 1.040605 | 0.603822 | 0.664049 | 0.729843 | 0.990394 | 0.957009 | 0.645990 | 0.616292 | 0.761059 | 1.086557 | 0.000095 | 0.000026 | 0.000009 | 0.000007 | 0.000030 | 0.008344 | 0.008239 | 0.007698 | 0.002458 | 0.014540 | 0.731115 | 0.560903 | 0.288764 | 0.223940 | 0.367094 | 0.384615 | 0.500000 | 0.442308 | 0.346154 | 0.288462 | 0.092799 | 0.311724 | 0.271543 | 0.263179 | 0.144069 | 0.235159 | 0.422835 | 0.410175 | 0.355693 | 0.238366 | 0.352052 | 0.591136 | 0.510734 | 0.489278 | 0.315606 | 0.559109 | 0.716898 | 0.666865 | 0.579383 | 0.522876 | 0.794516 | 0.794905 | 0.833896 | 0.844275 | 0.734778 | -1.339700e-04 | 0.000016 | 0.000022 | 0.000008 | -0.000040 | 0.470631 | 0.420191 | 0.105783 | 0.250053 | 0.274826 | 0.159351 | 0.137753 | 0.099425 | 0.070849 | 0.080482 | 0.461538 | 0.423077 | 0.230769 | 0.269231 | 0.461538 | -0.100000 | 0.100000 | 0.100000 | 0.033333 | 0.166667 | 1.310738 | 0.767167 | 0.291525 | 0.251764 | 0.444341 | 0.852881 | 0.406513 | 0.334311 | 0.281963 | 0.448147 | 2.134610 | 1.741194 | 0.904683 | 0.386733 | 0.549056 | 0.435475 | 1.639174 | 1.557181 | 1.422404 | 0.119644 | -0.581331 | -0.287372 | 0.576100 | 0.733402 | -0.414401 | 1.073162 | 2.158302 | 0.071514 | 0.358642 | 0.892382 | 0.277390 | 0.184073 | 0.130033 | 0.106666 | 0.146794 | 1.546435 | 0.780892 | 0.228642 | -0.173903 | 0.211476 | 0.943318 | 1.000520 | 1.035674 | 1.027725 | 0.950415 | 1.306777 | 1.875202 | 2.348189 | 2.580402 | 2.102024 | 14.650072 | 33.713166 | 15.707197 | 6.431842 | 2.174413 | 0.071851 | 0.033459 | 0.016688 | 0.010234 | 0.008980 | 3.350000e-06 | 1.580000e-06 | 7.900000e-07 | 5.000000e-07 | 4.400000e-07 | 0.245788 | 0.301959 | 0.413211 | 0.384396 | 0.167666 | 1.348739 | 1.426552 | 0.683760 | 0.866828 | 1.833954 | 0.152039 | 0.053163 | 0.020922 | 0.010311 | 0.046209 | 5.759539 | 14.565944 | 46.401780 | 88.653421 | 9.151643 | 0.073914 |
212425 rows × 384 columns
[9]:
##FIND quasars indices and transform to arrays
setindexnew=data_manager.get_qso(setindexqso)
setindexnew=np.array(setindexnew)
df = pd.DataFrame({'objectId': setindexnew})
df.set_index('objectId', inplace=True)
setidnew=df.index
[10]:
from QhX.light_curve import get_lc22
Load u,g,r,i light curve of Object ID=1384142, light_cruves_data as stacked array
get_lc22
Function Overview
The get_lc22
function processes and returns light curve data :
Input Parameters: - data_manager
: An object containing the light curve data, organized for retrieval by set IDs. - set1
: A string identifier for the object whose light curves are to be processed. It selects the specific dataset within data_manager
. - include_errors
(optional): A boolean flag to decide whether magnitude errors should be included in the time series data. Defaults to True
. Process Flow: 1. Data Validation: Checks if the specified set1
ID exists within
data_manager
. If not, it exits with None
, indicating an error or absence of data. 2. Data Extraction: Retrieves and processes data for each filter (assumes filters range from 1 to 4), sorting by Modified Julian Date (mjd
) and removing any null values. 3. Outlier Removal: Uses outliers_mad
function to cleanse the light curve data, considering magnitude errors if they are to be included and available. 4. Data Augmentation and Sampling: If magnitude errors are present
and requested, we add observational errors to the light curves by perturbing each data point within its error margin: (N(0,err_mag)). It enables period-finding algorithm to account for the uncertainty in each data point, leading to a more accurate and reliable estimation of the object’s periodicity. The function calculates the sampling rate for each filter’s time series as the mean difference between consecutive time points.
Output: The function outputs a tuple containing: - Processed time series data for each filter, with or without magnitude errors, based on the include_errors
flag. - The respective sampling rates for each filter’s data, providing insight into the time resolution of the observations.
This comprehensive processing and return of light curve data allow for an in-depth analysis of astronomical objects, taking into account data quality and observational errors.
[11]:
light_curves_data = get_lc22(data_manager, '1384142', include_errors=False)
[12]:
light_curves_data
[12]:
(array([51818.43, 52171.42, 52173.4 , 52224.38, 52234.33, 52283.17,
52287.18, 52557.47, 52585.37, 52908.45, 52912.43, 52934.38,
52936.37, 53270.44, 53272.49, 53286.46, 53288.41, 53294.46,
53296.41, 53298.46, 53312.37, 53314.37, 53616.47, 53639.48,
53657.44, 53675.38, 53680.39, 53686.39, 53699.41, 53989.47,
54008.46, 54009.42, 54011.48, 54025.48, 54029.49, 54031.4 ,
54036.41, 54039.4 , 54041.37, 54048.43, 54052.4 , 54058.4 ,
54060.42, 54065.4 , 54365.47, 54381.49, 54386.48, 54392.48,
54393.49, 54396.35, 54403.4 , 54404.46, 54406.39, 54409.4 ,
54412.42, 54416.39, 54421.4 , 54423.38, 54433.4 ]),
array([19.487167, 19.258741, 19.26747 , 19.273075, 19.276268, 19.24133 ,
19.18076 , 19.29091 , 19.317068, 19.309761, 19.27774 , 19.258095,
19.270597, 19.218782, 19.211699, 19.385593, 19.248219, 19.244982,
19.233717, 19.230547, 19.160337, 19.168606, 19.263157, 19.48252 ,
19.205746, 19.189566, 19.186361, 19.186861, 19.259214, 19.435116,
19.442768, 19.454254, 19.433054, 19.262674, 19.41067 , 19.416674,
19.461267, 19.449898, 19.428154, 19.509014, 19.470942, 19.426008,
19.519487, 19.488789, 19.492743, 19.55684 , 19.496195, 19.485415,
19.53713 , 19.458233, 19.49737 , 19.566244, 19.460844, 19.478912,
19.502745, 19.518599, 19.503729, 19.47426 , 19.51499 ],
dtype=float32),
array([51818.43, 52171.42, 52173.39, 52224.37, 52234.33, 52283.16,
52287.17, 52557.47, 52585.37, 52908.44, 52912.42, 52934.37,
52936.37, 53270.43, 53272.48, 53286.45, 53288.41, 53294.46,
53296.41, 53298.46, 53312.36, 53314.36, 53616.47, 53639.48,
53657.43, 53675.38, 53680.39, 53686.39, 53699.41, 53989.47,
54008.45, 54009.42, 54011.48, 54025.48, 54029.49, 54031.4 ,
54036.4 , 54039.4 , 54041.37, 54048.42, 54052.4 , 54058.39,
54060.42, 54065.39, 54365.47, 54381.49, 54386.48, 54392.48,
54393.49, 54396.35, 54403.4 , 54404.45, 54406.39, 54409.4 ,
54412.42, 54416.39, 54421.4 , 54423.37, 54433.4 ]),
array([19.067541, 18.858826, 18.87784 , 18.88775 , 18.880558, 18.835482,
18.865055, 18.896397, 18.906034, 18.986784, 18.88963 , 18.897112,
18.927052, 18.85413 , 18.81973 , 19.044624, 18.863712, 18.783983,
18.863485, 18.807205, 18.87544 , 18.788204, 18.839628, 18.849302,
18.83286 , 18.788876, 18.834482, 18.84284 , 18.844952, 19.043533,
19.01445 , 19.01894 , 18.994421, 18.941622, 19.008762, 19.013212,
19.015945, 19.026535, 19.036034, 19.045956, 19.012663, 19.041765,
19.041842, 19.056908, 19.090286, 19.117542, 19.071148, 19.06857 ,
19.088623, 19.095001, 19.048058, 19.085863, 19.06356 , 19.091923,
19.084703, 19.111233, 19.11881 , 19.13508 , 19.070162],
dtype=float32),
array([51818.43, 52171.42, 52173.4 , 52224.38, 52234.33, 52283.16,
52287.18, 52557.47, 52585.37, 52908.44, 52912.42, 52934.38,
52936.37, 53270.44, 53272.49, 53286.45, 53288.41, 53294.46,
53296.41, 53298.46, 53312.36, 53314.36, 53616.47, 53639.48,
53657.44, 53675.38, 53680.39, 53686.39, 53699.41, 53989.47,
54008.45, 54009.42, 54011.48, 54025.48, 54029.49, 54031.4 ,
54036.4 , 54039.4 , 54041.37, 54048.42, 54052.4 , 54058.39,
54060.42, 54065.39, 54365.47, 54381.49, 54386.48, 54392.48,
54393.49, 54396.35, 54403.4 , 54404.46, 54406.39, 54409.4 ,
54412.42, 54416.39, 54421.4 , 54423.37, 54433.4 ]),
array([18.845848, 18.71427 , 18.717072, 18.706953, 18.738094, 18.702692,
18.740034, 18.746946, 18.708296, 18.777199, 18.768492, 18.742142,
18.755127, 18.704638, 18.696827, 18.824139, 18.677223, 18.703337,
18.70635 , 18.627716, 18.691744, 18.642471, 18.712446, 18.715885,
18.677671, 18.625593, 18.631302, 18.669907, 18.707012, 18.857832,
18.839558, 18.86638 , 18.834661, 18.829254, 18.856771, 18.861313,
18.846321, 18.858253, 18.819777, 18.835802, 18.847778, 18.821941,
18.866451, 18.854805, 18.887213, 18.888792, 18.89962 , 18.913237,
18.886803, 18.959562, 18.899456, 18.920807, 18.937399, 18.902845,
18.905334, 18.906374, 18.87291 , 18.94068 , 18.890202],
dtype=float32),
array([51818.43, 52171.42, 52173.4 , 52224.38, 52234.33, 52283.16,
52287.18, 52557.47, 52585.37, 52908.45, 52912.42, 52934.38,
52936.37, 53270.44, 53272.49, 53286.46, 53288.41, 53294.46,
53296.41, 53298.46, 53312.37, 53314.37, 53616.47, 53657.44,
53675.38, 53680.39, 53686.39, 53699.41, 53989.47, 54008.46,
54009.42, 54011.48, 54025.48, 54029.49, 54031.4 , 54036.4 ,
54039.4 , 54041.37, 54048.42, 54052.4 , 54058.4 , 54060.42,
54065.4 , 54365.47, 54381.49, 54386.48, 54392.48, 54393.49,
54396.35, 54403.4 , 54404.46, 54406.39, 54409.4 , 54412.42,
54416.39, 54421.4 , 54423.37, 54433.4 ]),
array([18.532455, 18.413788, 18.492144, 18.384977, 18.39705 , 18.365591,
18.416399, 18.44976 , 18.381535, 18.4777 , 18.405382, 18.376106,
18.459177, 18.387926, 18.42326 , 18.460321, 18.359886, 18.458498,
18.391264, 18.349352, 18.355343, 18.313208, 18.453217, 18.363897,
18.342276, 18.337543, 18.306156, 18.479729, 18.480738, 18.448893,
18.487144, 18.43134 , 18.416773, 18.557781, 18.436623, 18.471283,
18.505116, 18.482761, 18.548965, 18.562773, 18.532354, 18.487179,
18.559294, 18.510853, 18.576326, 18.538883, 18.51235 , 18.605324,
18.49462 , 18.552446, 18.461958, 18.53137 , 18.572111, 18.537954,
18.521812, 18.542027, 18.555769, 18.512682], dtype=float32),
45.08568965517243,
45.08568965517243,
45.08568965517243,
45.87666666666669)
[13]:
from QhX.calculation import periods, signif_johnson
[14]:
import numpy as np
from QhX.light_curve import get_lctiktok, get_lc22
from QhX.calculation import *
# Ensure to import or define other necessary functions like hybrid2d, periods, same_periods, etc.
from QhX.algorithms.wavelets.wwtz import *
[15]:
# Retrieve light curves as separate arrays, using the get_lc22 function with include_errors parameter
tt0, yy0,tt1, yy1, tt2, yy2, tt3, yy3, sampling0, sampling1, sampling2, sampling3 = get_lc22(data_manager, '1384142', include_errors=True)
[16]:
plt.plot(tt0,yy0,'ro')
plt.ylabel('mag')
plt.xlabel('mjd')
[16]:
Text(0.5, 0, 'mjd')
Simple version of paralelization of objects processing. Calculation of wavelet matrices for each light curve is paralelized in the libwwz library
[17]:
from QhX.processing_utils import parallel_pool
#Note: parallel_pool supports two modes—fixed and dynamical. The default mode is fixed.
#Please refer to the module documentation for further details.
# Example set IDs and parameters for the processing function
setids = ['1385092', '1385097', '1385098']
# data_manager = DataManager() # Presumed to be a previously defined DataManager instance
# Parameters for the processing function
ntau = 80
ngrid = 80
provided_minfq = 200
provided_maxfq = 10
include_errors = False
# Execute the parallel processing function and print the results
results = parallel_pool(setids, data_manager, ntau, ngrid, provided_minfq, provided_maxfq, include_errors, num_threads=3)
*** Starting Weighted Wavelet Z-transform ***
adjusted time_divisions to: 63
Pseudo sample frequency (median) is 0.2
largest tau window is 42.177
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.5
largest tau window is 33.101
3.27 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
adjusted time_divisions to: 65
Pseudo sample frequency (median) is 0.201
largest tau window is 40.859
5.79 seconds has passed to complete Weighted Wavelet Z-transform
6.25 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.519
largest tau window is 33.101
2.8 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
adjusted time_divisions to: 65
Pseudo sample frequency (median) is 0.2
largest tau window is 40.702
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.503
largest tau window is 33.101
2.82 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
adjusted time_divisions to: 65
Pseudo sample frequency (median) is 0.2
largest tau window is 40.859
4.35 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.521
largest tau window is 33.101
3.26 seconds has passed to complete Weighted Wavelet Z-transform
4.0 seconds has passed to complete Weighted Wavelet Z-transform
8.25 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.5
largest tau window is 33.101
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.5
largest tau window is 33.101
4.05 seconds has passed to complete Weighted Wavelet Z-transform
4.01 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.498
largest tau window is 33.101
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
4.01 seconds has passed to complete Weighted Wavelet Z-transform
4.06 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
1.98 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
1.94 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
1.95 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
1.94 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
1.94 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.04 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
1.99 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
1.98 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
1.96 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.02 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.01 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
1.99 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.31 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.18 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.29 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.38 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.17 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.09 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.09 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.24 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.42 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.38 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.32 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.32 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.17 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.13 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.12 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.03 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.04 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.04 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
1.97 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.04 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.03 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.03 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
1.99 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.07 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.03 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.05 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.02 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.04 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
1.98 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.0 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
1.96 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
1.95 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
1.95 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.03 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.06 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.02 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
1.95 seconds has passed to complete Weighted Wavelet Z-transform
[26]:
# If this script is executed directly (rather than imported as a module), run a test
if __name__ == "__main__":
# Example set IDs and parameters for the processing function
setids = ['1385092', '1385097']
# data_manager = DataManager() # Presumed to be a previously defined DataManager instance
# Parameters for the processing function
ntau = 80
ngrid = 80
provided_minfq = 200
provided_maxfq = 10
include_errors = False
# Execute the parallel processing function and print the results
results = parallel_pool(setids, data_manager, ntau, ngrid, provided_minfq, provided_maxfq, include_errors, num_threads=2)
for result in results:
print(result)
*** Starting Weighted Wavelet Z-transform ***
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
Pseudo sample frequency (median) is 0.5
largest tau window is 33.101
4.1 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.503
largest tau window is 33.101
4.28 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.519
largest tau window is 33.101
4.174.04 seconds has passed to complete Weighted Wavelet Z-transform
seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.5
largest tau window is 33.101
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.521
largest tau window is 33.101
4.0 seconds has passed to complete Weighted Wavelet Z-transform
4.06 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.498
largest tau window is 33.101
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.5
largest tau window is 33.101
4.3 seconds has passed to complete Weighted Wavelet Z-transform
4.34 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.1 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.08 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.0 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.02 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
1.99 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.0 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.02 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.13 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.0 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.02 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.04 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.02 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.11 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.23 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.2 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.19 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.19 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.18 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.18 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.24 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.12 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.32 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.23 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.22 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.29 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.1 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.13 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.21 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.11 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.05 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.13 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.11 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.09 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.07 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.16 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.41 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.12 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.07 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.07 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.07 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.05 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
1.98 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.02 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.12 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.23 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.21 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.08 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.14 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.19 seconds has passed to complete Weighted Wavelet Z-transform
*** Starting Weighted Wavelet Z-transform ***
Pseudo sample frequency (median) is 0.515
largest tau window is 33.101
2.23 seconds has passed to complete Weighted Wavelet Z-transform
[{'objectid': '1385092', 'sampling_i': 20.115076923076916, 'sampling_j': 20.271085271317837, 'period': nan, 'upper_error': nan, 'lower_error': nan, 'significance': nan, 'label': '0-1'}, {'objectid': '1385092', 'sampling_i': 20.115076923076916, 'sampling_j': 19.961603053435123, 'period': nan, 'upper_error': nan, 'lower_error': nan, 'significance': nan, 'label': '0-2'}, {'objectid': '1385092', 'sampling_i': 20.115076923076916, 'sampling_j': 21.25983739837398, 'period': nan, 'upper_error': nan, 'lower_error': nan, 'significance': nan, 'label': '0-3'}, {'objectid': '1385092', 'sampling_i': 20.271085271317837, 'sampling_j': 19.961603053435123, 'period': nan, 'upper_error': nan, 'lower_error': nan, 'significance': nan, 'label': '1-2'}, {'objectid': '1385092', 'sampling_i': 20.271085271317837, 'sampling_j': 21.25983739837398, 'period': nan, 'upper_error': nan, 'lower_error': nan, 'significance': nan, 'label': '1-3'}, {'objectid': '1385092', 'sampling_i': 19.961603053435123, 'sampling_j': 21.25983739837398, 'period': nan, 'upper_error': nan, 'lower_error': nan, 'significance': nan, 'label': '2-3'}]
[{'objectid': '1385097', 'sampling_i': 20.429374999999993, 'sampling_j': 20.115153846153856, 'period': 161.61616161616163, 'upper_error': -1, 'lower_error': -1, 'significance': 1.0, 'label': '0-1'}, {'objectid': '1385097', 'sampling_i': 20.429374999999993, 'sampling_j': 21.259918699187, 'period': nan, 'upper_error': nan, 'lower_error': nan, 'significance': nan, 'label': '0-2'}, {'objectid': '1385097', 'sampling_i': 20.429374999999993, 'sampling_j': 21.25983739837398, 'period': nan, 'upper_error': nan, 'lower_error': nan, 'significance': nan, 'label': '0-3'}, {'objectid': '1385097', 'sampling_i': 20.115153846153856, 'sampling_j': 21.259918699187, 'period': nan, 'upper_error': nan, 'lower_error': nan, 'significance': nan, 'label': '1-2'}, {'objectid': '1385097', 'sampling_i': 20.115153846153856, 'sampling_j': 21.25983739837398, 'period': nan, 'upper_error': nan, 'lower_error': nan, 'significance': nan, 'label': '1-3'}, {'objectid': '1385097', 'sampling_i': 21.259918699187, 'sampling_j': 21.25983739837398, 'period': nan, 'upper_error': nan, 'lower_error': nan, 'significance': nan, 'label': '2-3'}]
[23]:
for result in results:
print(result)
[{'objectid': '1385092', 'sampling_i': 20.115076923076916, 'sampling_j': 20.271085271317837, 'period': nan, 'upper_error': nan, 'lower_error': nan, 'significance': nan, 'label': '0-1'}, {'objectid': '1385092', 'sampling_i': 20.115076923076916, 'sampling_j': 19.961603053435123, 'period': nan, 'upper_error': nan, 'lower_error': nan, 'significance': nan, 'label': '0-2'}, {'objectid': '1385092', 'sampling_i': 20.115076923076916, 'sampling_j': 21.25983739837398, 'period': nan, 'upper_error': nan, 'lower_error': nan, 'significance': nan, 'label': '0-3'}, {'objectid': '1385092', 'sampling_i': 20.271085271317837, 'sampling_j': 19.961603053435123, 'period': nan, 'upper_error': nan, 'lower_error': nan, 'significance': nan, 'label': '1-2'}, {'objectid': '1385092', 'sampling_i': 20.271085271317837, 'sampling_j': 21.25983739837398, 'period': nan, 'upper_error': nan, 'lower_error': nan, 'significance': nan, 'label': '1-3'}, {'objectid': '1385092', 'sampling_i': 19.961603053435123, 'sampling_j': 21.25983739837398, 'period': nan, 'upper_error': nan, 'lower_error': nan, 'significance': nan, 'label': '2-3'}]
[{'objectid': '1385097', 'sampling_i': 20.429374999999993, 'sampling_j': 20.115153846153856, 'period': 161.61616161616163, 'upper_error': -1, 'lower_error': -1, 'significance': 1.0, 'label': '0-1'}, {'objectid': '1385097', 'sampling_i': 20.429374999999993, 'sampling_j': 21.259918699187, 'period': nan, 'upper_error': nan, 'lower_error': nan, 'significance': nan, 'label': '0-2'}, {'objectid': '1385097', 'sampling_i': 20.429374999999993, 'sampling_j': 21.25983739837398, 'period': nan, 'upper_error': nan, 'lower_error': nan, 'significance': nan, 'label': '0-3'}, {'objectid': '1385097', 'sampling_i': 20.115153846153856, 'sampling_j': 21.259918699187, 'period': nan, 'upper_error': nan, 'lower_error': nan, 'significance': nan, 'label': '1-2'}, {'objectid': '1385097', 'sampling_i': 20.115153846153856, 'sampling_j': 21.25983739837398, 'period': nan, 'upper_error': nan, 'lower_error': nan, 'significance': nan, 'label': '1-3'}, {'objectid': '1385097', 'sampling_i': 21.259918699187, 'sampling_j': 21.25983739837398, 'period': nan, 'upper_error': nan, 'lower_error': nan, 'significance': nan, 'label': '2-3'}]
[{'objectid': '1385098', 'sampling_i': 42.176774193548376, 'sampling_j': 40.85890625000002, 'period': nan, 'upper_error': nan, 'lower_error': nan, 'significance': nan, 'label': '0-1'}, {'objectid': '1385098', 'sampling_i': 42.176774193548376, 'sampling_j': 40.702343749999955, 'period': nan, 'upper_error': nan, 'lower_error': nan, 'significance': nan, 'label': '0-2'}, {'objectid': '1385098', 'sampling_i': 42.176774193548376, 'sampling_j': 40.858749999999986, 'period': nan, 'upper_error': nan, 'lower_error': nan, 'significance': nan, 'label': '0-3'}, {'objectid': '1385098', 'sampling_i': 40.85890625000002, 'sampling_j': 40.702343749999955, 'period': nan, 'upper_error': nan, 'lower_error': nan, 'significance': nan, 'label': '1-2'}, {'objectid': '1385098', 'sampling_i': 40.85890625000002, 'sampling_j': 40.858749999999986, 'period': nan, 'upper_error': nan, 'lower_error': nan, 'significance': nan, 'label': '1-3'}, {'objectid': '1385098', 'sampling_i': 40.702343749999955, 'sampling_j': 40.858749999999986, 'period': nan, 'upper_error': nan, 'lower_error': nan, 'significance': nan, 'label': '2-3'}]
[ ]:
pp=process1_new(data_manager, '1385097', ntau=80, ngrid=800, provided_minfq=2000, provided_maxfq=10, include_errors=False)
[ ]:
results
[ ]:
process12_results=[[{'objectid': '1384142',
'sampling_i': 45.08568965517243,
'sampling_j': 45.08568965517243,
'period': 446.179587283882,
'upper_error': 26.594480680527795,
'lower_error': 22.513862402711993,
'significance': 0.98,
'label': '0-1'},
{'objectid': '1384142',
'sampling_i': 45.08568965517243,
'sampling_j': 45.08568965517243,
'period': 446.179587283882,
'upper_error': 35.654914195946844,
'lower_error': 17.127186682281263,
'significance': 1.0,
'label': '0-2'},
{'objectid': '1384142',
'sampling_i': 45.08568965517243,
'sampling_j': 45.87666666666669,
'period': 446.179587283882,
'upper_error': 30.9002280462837,
'lower_error': 20.398836831717233,
'significance': 1.0,
'label': '0-3'},
{'objectid': '1384142',
'sampling_i': 45.08568965517243,
'sampling_j': 45.08568965517243,
'period': 472.39444936522017,
'upper_error': 26.594480680527795,
'lower_error': 22.513862402711993,
'significance': 1.0,
'label': '1-2'},
{'objectid': '1384142',
'sampling_i': 45.08568965517243,
'sampling_j': 45.87666666666669,
'period': 472.39444936522017,
'upper_error': 26.594480680527795,
'lower_error': 22.513862402711993,
'significance': 1.0,
'label': '1-3'},
{'objectid': '1384142',
'sampling_i': 45.08568965517243,
'sampling_j': 45.87666666666669,
'period': 308.999613750483,
'upper_error': 22.17397677238779,
'lower_error': 3.746728576973794,
'significance': 0.98,
'label': '1-3'},
{'objectid': '1384142',
'sampling_i': 45.08568965517243,
'sampling_j': 45.87666666666669,
'period': 472.39444936522017,
'upper_error': 30.9002280462837,
'lower_error': 20.398836831717233,
'significance': 0.94,
'label': '2-3'}]]
[24]:
from QhX.output import classify_periods, classify_period
[25]:
outt=classify_periods(results)
[26]:
# Assuming output_df is the DataFrame returned by classify_periods function
outt['classification'] =outt.apply(classify_period, axis=1)
print(outt)
objectid m3 m4 m5 m6 m7_1 m7_2 period_diff iou \
0 1385092 NaN NaN NaN NaN 0-1 0-2 NaN NaN
1 1385092 NaN NaN NaN NaN 0-1 0-3 NaN NaN
2 1385092 NaN NaN NaN NaN 0-1 1-2 NaN NaN
3 1385092 NaN NaN NaN NaN 0-1 1-3 NaN NaN
4 1385092 NaN NaN NaN NaN 0-1 2-3 NaN NaN
5 1385092 NaN NaN NaN NaN 0-2 0-3 NaN NaN
6 1385092 NaN NaN NaN NaN 0-2 1-2 NaN NaN
7 1385092 NaN NaN NaN NaN 0-2 1-3 NaN NaN
8 1385092 NaN NaN NaN NaN 0-2 2-3 NaN NaN
9 1385092 NaN NaN NaN NaN 0-3 1-2 NaN NaN
10 1385092 NaN NaN NaN NaN 0-3 1-3 NaN NaN
11 1385092 NaN NaN NaN NaN 0-3 2-3 NaN NaN
12 1385092 NaN NaN NaN NaN 1-2 1-3 NaN NaN
13 1385092 NaN NaN NaN NaN 1-2 2-3 NaN NaN
14 1385092 NaN NaN NaN NaN 1-3 2-3 NaN NaN
15 1385097 161.616162 -1.0 -1.0 1.0 0-1 0-2 NaN NaN
16 1385097 161.616162 -1.0 -1.0 1.0 0-1 0-3 NaN NaN
17 1385097 161.616162 -1.0 -1.0 1.0 0-1 1-2 NaN NaN
18 1385097 161.616162 -1.0 -1.0 1.0 0-1 1-3 NaN NaN
19 1385097 161.616162 -1.0 -1.0 1.0 0-1 2-3 NaN NaN
20 1385097 NaN NaN NaN NaN 0-2 0-3 NaN NaN
21 1385097 NaN NaN NaN NaN 0-2 1-2 NaN NaN
22 1385097 NaN NaN NaN NaN 0-2 1-3 NaN NaN
23 1385097 NaN NaN NaN NaN 0-2 2-3 NaN NaN
24 1385097 NaN NaN NaN NaN 0-3 1-2 NaN NaN
25 1385097 NaN NaN NaN NaN 0-3 1-3 NaN NaN
26 1385097 NaN NaN NaN NaN 0-3 2-3 NaN NaN
27 1385097 NaN NaN NaN NaN 1-2 1-3 NaN NaN
28 1385097 NaN NaN NaN NaN 1-2 2-3 NaN NaN
29 1385097 NaN NaN NaN NaN 1-3 2-3 NaN NaN
30 1385098 NaN NaN NaN NaN 0-1 0-2 NaN NaN
31 1385098 NaN NaN NaN NaN 0-1 0-3 NaN NaN
32 1385098 NaN NaN NaN NaN 0-1 1-2 NaN NaN
33 1385098 NaN NaN NaN NaN 0-1 1-3 NaN NaN
34 1385098 NaN NaN NaN NaN 0-1 2-3 NaN NaN
35 1385098 NaN NaN NaN NaN 0-2 0-3 NaN NaN
36 1385098 NaN NaN NaN NaN 0-2 1-2 NaN NaN
37 1385098 NaN NaN NaN NaN 0-2 1-3 NaN NaN
38 1385098 NaN NaN NaN NaN 0-2 2-3 NaN NaN
39 1385098 NaN NaN NaN NaN 0-3 1-2 NaN NaN
40 1385098 NaN NaN NaN NaN 0-3 1-3 NaN NaN
41 1385098 NaN NaN NaN NaN 0-3 2-3 NaN NaN
42 1385098 NaN NaN NaN NaN 1-2 1-3 NaN NaN
43 1385098 NaN NaN NaN NaN 1-2 2-3 NaN NaN
44 1385098 NaN NaN NaN NaN 1-3 2-3 NaN NaN
classification
0 NAN
1 NAN
2 NAN
3 NAN
4 NAN
5 NAN
6 NAN
7 NAN
8 NAN
9 NAN
10 NAN
11 NAN
12 NAN
13 NAN
14 NAN
15 NAN
16 NAN
17 NAN
18 NAN
19 NAN
20 NAN
21 NAN
22 NAN
23 NAN
24 NAN
25 NAN
26 NAN
27 NAN
28 NAN
29 NAN
30 NAN
31 NAN
32 NAN
33 NAN
34 NAN
35 NAN
36 NAN
37 NAN
38 NAN
39 NAN
40 NAN
41 NAN
42 NAN
43 NAN
44 NAN
[ ]:
outt
[27]:
import os, holoviews as hv
os.environ['HV_DOC_HTML'] = 'true'
[28]:
from QhX.plots import interactive_plt
[29]:
interactive_plt.create_interactive_plot(outt)
[29]:
[ ]: