superlets
- QhX.algorithms.superlets.superlets.superlets_methods(tt, mag, ntau, minfq=10, maxfq=500)[source]
Perform a hybrid 2D method using superlets on time-series data.
This function applies the superlet transform to the provided time-series data and then computes a correlation matrix using the resulting transformed data. It’s particularly useful for time-frequency analysis with high resolution.
- Parameters:
tt (-) – Array of time data points.
mag (-) – Array of magnitude values corresponding to the time data.
ntau (-) – Number of time divisions for the analysis. Controls the resolution in time.
minfq (-) – Minimum frequency of interest. Default is 10.
-maxfq (float, optional) – Maximum frequency of interest. Default is 500.
- Returns:
-ndarray – Correlation matrix derived from the superlet transform of the input data.
-extent (list) – Extent of the correlation matrix values, given as [min, max, min, max].
Examples
>>> tt = np.linspace(0, 10, 1000) >>> mag = np.sin(tt) >>> corr, extent = superlets_methods(tt, mag, 100)