wwtz
- QhX.algorithms.wavelets.wwtz.compute_frequency_grid(Nn, minfq=None, maxfq=None)[source]
- Computes the frequency grid for wavelet analysis given the periodis corresponding to minimum and maximum frequencies. - Parameters:- Nn (int): Number of grid points for the frequency axis. 
- minfq (float, optional): period correspoding to the Minimum frequency value. If None, a default value should be defined elsewhere. 
- maxfq (float, optional): period corresponding to the Maximum frequency value. If None, a default value should be defined elsewhere. 
 - Returns:- tuple: Contains the frequency step (df), minimum frequency (fmin), and maximum frequency (fmax) for the grid. - Note:- The function assumes the input periods are in days so that freqeuncies are in days ^-1 (1/days). 
- If minfq or maxfq is None, ensure default values are set or passed to this function. 
- The function returns frequencies in the same units as periods corresponding to the minfq and maxfq. 
 
- QhX.algorithms.wavelets.wwtz.estimate_wavelet_periods(time_series, ngrid, known_period=None)[source]
- Estimate minimum and maximum periods for wavelet analysis. - Parameters:- time_series (array): Array of time points in your data. 
- sampling_rate (float): The sampling rate of your data (data points per time unit). 
- known_period (float, optional): A known period in your data, if any. 
 - Returns:- tuple: (min_period, max_period) estimated periods for analysis. 
- QhX.algorithms.wavelets.wwtz.hybrid2d(tt, mag, ntau, ngrid, minfq, maxfq, parallel=False, f=2, method='linear')[source]
- Perform a hybrid 2D analysis involving WWZ (Weighted Wavelet Z-transform) and auto-correlation on light curve data. - This function computes the WWZ transformation of the input light curve data and then performs an auto-correlation analysis on the result. The frequency range for the analysis can be specified, as well as the decay constant and interpolation method for WWZ. - Parameters:- tt: array_like
- Array of time data for the light curve. 
 
- mag: array_like
- Array of magnitude values corresponding to the time data. 
 
- ntau: int
- Number of time divisions for the WWZ analysis. 
 
- ngrid: int
- Number of grid points (frequency resolution) for the WWZ analysis. 
 
- minfq: float
- Minimum frequency (or corresponding period) for WWZ analysis. 
 
- maxfq: float
- Maximum frequency (or corresponding period) for WWZ analysis. 
 
- f: float, optional
- Decay constant for the analyzing wavelet in WWZ, by default 2. 
 
- method: str, optional
- Interpolation method used in WWZ (‘linear’ or ‘octave’), by default ‘linear’. 
 
 - Returns:- A tuple containing: - WWZ matrix: The WWZ analysis result. 
- Auto-correlation matrix: The result of auto-correlation analysis. 
- Frequency range extent: The extent of the frequency range for plotting. 
 - Examples:- >>> tt = [0, 1, 2, 3, 4] >>> mag = [10, 11, 12, 13, 14] >>> wwz_result, acorr_result, freq_extent = hybrid2d(tt, mag, 100, 50, 0.1, 1.0) 
- QhX.algorithms.wavelets.wwtz.inp_param(ntau, ngrid, minfq, maxfq, parallel=False, f=2)[source]
- Calculate the input parameters for WWZ (Weighted Wavelet Z-transform) analysis. - Parameters:- ntau (int): Number of time delays to use in the wavelet analysis. 
- ngrid (int): Number of grid points for frequency analysis. 
- minfq (float): period corresponding to the Minimum frequency for analysis. 
- maxfq (float): period corresponding to the Maximum frequency for analysis. 
- f (float): Frequency multiplier for calculating the decay constant. Default is 2. 
 - Returns:- ntau (int): Number of time delays. 
- frequency_parameters (list): List containing frequency parameters [freq_low, freq_high, freq_step, override]. 
- decay_constant (float): Decay constant for the wavelet. 
- parallel (bool): Flag to enable parallel processing, will use all available cores. 
 - Note:- The decay constant is calculated based on the frequency ‘f’ and is used to define the shape of the analyzing wavelet. 
 
- QhX.algorithms.wavelets.wwtz.wwt1(tt, mag, ntau, ngrid, minfq, maxfq, parallel=False, f=2, method='linear')[source]
- Calculate the Weighted Wavelet Z-transform (WWZ) of a given time series signal. - Parameters:- tt (list): List of time data points. 
- mag (list): List of magnitude values corresponding to time points in ‘tt’. 
- ntau (int): Number of time divisions for WWZ analysis. 
- ngrid (int): Grid size for frequency analysis in WWZ. 
- minfq (float): period corresponidng to the Minimum frequency for WWZ analysis. 
- maxfq (float): period corresponidng to the maximum frequency for WWZ analysis. 
- f (float): Frequency multiplier for calculating the decay constant in WWZ. Default is 2. 
- method (str): Method for frequency analysis, either ‘linear’ or ‘octave’. Default is ‘linear’. 
 - Returns:- WWZ matrix coefficients: The result of WWZ analysis as provided by the ‘libwwz’ library. 
 - Notes:- The ‘method’ parameter allows selection between linear and octave frequency scaling.